• Laser & Optoelectronics Progress
  • Vol. 55, Issue 12, 120006 (2018)
Yun Ye1、2、3, Xiaolin Wang1、2、3、*, Chen Shi1、2、3, Hanwei Zhang1、2、3, Xiaoming Xi1、2、3, Pu Zhou1、2、3, and Xiaojun Xu1、2、3、**
Author Affiliations
  • 1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, Hunan 410073, China
  • 3 Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/LOP55.120006 Cite this Article Set citation alerts
    Yun Ye, Xiaolin Wang, Chen Shi, Hanwei Zhang, Xiaoming Xi, Pu Zhou, Xiaojun Xu. Research Progress in High Power Ytterbium Doped Fiber Laser Oscillator[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120006 Copy Citation Text show less
    References

    [1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 27, B63-B92(2010). http://www.opticsinfobase.org/abstract.cfm?uri=josab-27-11-B63

    [2] Nilsson J, Payne D N. High-power fiber lasers[J]. Science, 332, 921-922(2011).

    [3] Zervas M N, Codemard C A. Highpower fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014). http://ieeexplore.ieee.org/document/6808413/

    [4] Zervas M N. High power ytterbium-doped fiber lasers: fundamentals and applications[J]. International Journal of Modern Physics B, 28, 1442009(2014). http://www.worldscientific.com/doi/abs/10.1142/S0217979214420090

    [5] Dominic V. MacCormack S, Waarts R, et al. 110 W fibre laser[J]. Electronics Letters, 35, 1158-1160(1999).

    [6] Gapontsev V, Gapontsev D, Platonov N et al. 2 kW CW ytterbium fiber laser with record diffraction-limited brightness. [C]∥Conference on Lasers and Electro-Optics Europe, 508(2005).

    [8] Yu H. Kliner D A V, Liao K, et al. 1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes[J]. Proceedings of SPIE, 8237, 82370G(2012).

    [11] O'Connor M. Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10 kW. [C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA, CThA3(2009).

    [12] Shiner B. The impact of fiber laser technology on the world wide material processing market. [C]∥Conference on Lasers and Electro-Optics Europe, AF2J, 1(2013).

    [13] Dai S J, He B, Zhou J et al. 1.5 kW near single-mode all-fiber laser[J]. Chinese Journal of Lasers, 40, 0702001(2013).

    [14] Yu H L, Zhang H W, Lv H et al. 315 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser[J]. Applied Optics, 54, 4556-4560(2015). http://www.ncbi.nlm.nih.gov/pubmed/25967516

    [15] Wang X L, Zhang H W, Tao R M et al. laser diode pumped 4.1 kW all-fiber laser with master oscillator power amplification configuration[J]. Chinese Journal of Lasers, 43, 1105001(2016).

    [16] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 19, 10180-10192(2011). http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-11-10180

    [17] Hansen K R, Alkeskjold T T, Broeng J et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 21, 1944-1971(2013). http://europepmc.org/abstract/MED/23389177

    [18] Haarlammert N, de Vries O, Liem A et al. . Build up and decay of mode instability in a high power fiber amplifier[J]. Optics Express, 20, 13274-13283(2012). http://www.ncbi.nlm.nih.gov/pubmed/22714355

    [19] Tao R M, Wang X L, Xiao H et al. Theoretical study of the threshold power of mode instability in high-power fiber amplifiers[J]. Acta Optica Sinica, 34, 0114002(2014).

    [20] Mohammed W, Gu X. Fiber Bragg grating in large-mode-area fiber for high power fiber laser applications[J]. Applied Optics, 49, 5297-5301(2010). http://www.ncbi.nlm.nih.gov/pubmed/20885465

    [22] Jeong Y, Sahu J K, Payne D N et al. Ytterbium-doped large-core fiber laser with 1 kW continuous-wave output power. [C]∥Conference on Lasers and Electro-Optics Europe, PDP13(2004).

    [23] Jeong Y, Sahu J K, Payne D N et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 12, 6088-6092(2004). http://europepmc.org/abstract/MED/19488250

    [24] Jeong Y C, Boyland A J, Sahu J K et al. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser[J]. Journal of the Optical Society of Korea, 13, 416-422(2009). http://www.opticsinfobase.org/abstract.cfm?uri=josk-13-4-416

    [25] Khitrov V, Minelly J D, Tumminelli R et al. 3 kW single-mode direct diode-pumped fiber laser[J]. Proceedings of SPIE, 8961, 89610V(2014). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2037453

    [26] Xiao Y, Brunet F, Kanskar M et al. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks[J]. Optics Express, 20, 3296-3301(2012). http://europepmc.org/abstract/med/22330567

    [27] Yu H L, Wang X L, Tao R M et al. 15 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator[J]. Applied Optics, 53, 8055-8059(2014). http://europepmc.org/abstract/med/25607963

    [28] Shima K, Ikoma S, Uchiyama K et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[J]. Proceedings of SPIE, 10512, 105120C(2018). http://www.spiedigitallibrary.org/conference-proceedings-of-spie/10512/105120C/5-kW-single-stage-all-fiber-Yb-doped-single-mode/10.1117/12.2287624.full

    [29] Shi W, Fang Q, Xu Y et al. 1.63 kW monolithic continuous-wave single-mode fiber laser oscillator[J]. Journal of Optoelectronics·Laser, 26, 662-666(2015).

    [30] Mashiko Y, Nguyen H K, Kashiwagi M et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[J]. Proceedings of SPIE, 9728, 972805(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2503097

    [31] Yang B L, Zhang H W, Shi C et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme[J]. Optics Express, 24, 27828-27835(2016). http://europepmc.org/abstract/med/27906351

    [32] Yang B L, Zhang H W, Shi C et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability[J]. Journal of Optics, 20, 025802(2018). http://adsabs.harvard.edu/abs/2018JOpt...20b5802Y

    [33] Xu Y, Fang Q, Xie Z X et al. Single fiber quasi-single mode 2 kW all-fiber laser oscillator based on single-end 915 nm semiconductor laser forward-pumping[J]. Chinese Journal of Lasers, 43, 0401003(2018).

    [34] Zhang X, Zhang F, Zheng W et al. 2-kW single-mode fiber laser employing bidirectional-pump scheme[J]. Proceedings of SPIE, 10619, 106190G(2017). http://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201710020.htm

    [35] Ikoma S, Nguyen H K, Kashiwagi M et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[J]. Proceedings of SPIE, 10083, 100830Y(2017). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2606903

    [36] Yang B L, Zhang H W, Ye Q et al. 4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings[J]. Chinese Optics Letters, 16, 031407(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180315000085fLiOkR

    [37] Yang B L, Shi C, Zhang H W et al. Monolithic fiber laser oscillator with record high power[J]. Laser Physics Letters, 15, 075106(2018).

    [38] Liao L, Liu P, Xing Y B et al. A kW continuous-wave ytterbium-doped all-fiber laser oscillator with domestic fiber components and gain fiber[J]. Chinese Physics Letters, 32, 064201(2015). http://www.cqvip.com/QK/84212X/201506/665068898.html

    [39] Wang X L, Tao R M, Zhang H W et al. 1 kilowatt single-end pumped all-fiber laser oscillator with good beam quality and high stability[J]. Chinese Journal of Lasers, 41, 1105001(2014).

    [40] Zhang H W, Wang X L, Yang B L et al. All-fiber laser oscillator realized 2.5 kW power and single mode output[J]. Chinese Journal of Lasers, 43, 1115002(2016).

    [41] Zhang H W, Yang B L, Wang X L et al. 2.7 kW all-fiber laser oscillator based on domestic 25/400 μm gratings[J]. Chinese Journal of Lasers, 44, 1215001(2017).

    [42] Zhang H W, Wang X L, Yang B L et al. All-fiber laser oscillator with output power break through 3 kW[J]. Chinese Journal of Lasers, 44, 0415001(2017).

    [43] Yang B L, Zhang H W, Wang X L et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J]. Journal of Optics, 18, 105803(2016).

    [44] Yla-Jarkko K H, Codemard C, Singleton J et al. . Low-noise intelligent cladding-pumped L-band EDFA[J]. IEEE Photonics Technology Letters, 15, 909-911(2003).

    [45] Chen J B, Cao J Q, Pan Z Y et al. Multi-stage cascaded distributed side pumped fiber optic oscillator based on domestic optical fiber for power output of 2 kW[J]. Chinese Journal of Lasers, 44, 0415002(2017).

    [46] Chen J B, Cao J Q, Huang Z H et al. Multi-stage cascade distributed side-pumped fiber optic oscillator based on domestic optical fiber for power output of 3 kW level with strong Raman suppression[J]. Chinese Journal of Lasers, 45, 0315002(2018).

    [47] Ma X, Liu C H, Chang G Q et al. Angular-momentum coupled optical waves in chirally-coupled-core fibers[J]. Optics Express, 19, 26515-26528(2011). http://www.ncbi.nlm.nih.gov/pubmed/22274236

    [48] Dong L, Peng X, Li J. Leakage channel optical fibers with large effective area[J]. Journal of the Optical Society of America B, 24, 1689-1697(2007). http://www.opticsinfobase.org/abstract.cfm?id=140002

    [49] Stutzki F, Jansen F, Eidam T et al. High average power large-pitch fiber amplifier with robust single-mode operation[J]. Optics Letters, 36, 689-691(2011). http://europepmc.org/abstract/MED/21368950

    [50] Jain D, Jung Y, Nunez-Velazquez M et al. Extending single mode performance of all-solid large-mode-area single trench fiber[J]. Optics Express, 22, 31078-31091(2014). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-25-31078

    [51] Kashiwagi M, Saitoh K, Takenaga K et al. Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers[J]. Optics Express, 20, 15061-15070(2012). http://www.ncbi.nlm.nih.gov/pubmed/22772202

    [52] Ma X, Zhu C, Hu I et al. Single-mode chirally-coupled-core fibers with larger than 50 μm diameter cores[J]. Optics Express, 22, 9206-9219(2014). http://europepmc.org/abstract/med/24787810

    [53] Limpert J, Stutzki F, Jansen F et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation[J]. Light: Science & Applications, 1, e8(2012). http://links.ealert.nature.com/ctt?kn=5&ms=NDQ3MDU2NDES1&r=MTc3MDQ1ODgzMAS2&b=0&j=MjIzODI5ODgxS0&mt=1&rt=0

    [54] Kanskar M, Zhang J, Koponen J et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications[J]. Proceedings of SPIE, 10512, 105120F(2018).

    [55] Tao R M, Ma P F, Wang X L et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 17, 045504(2015).

    [56] Tao R M, Ma P F, Wang X L et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 14, 025002(2017). http://adsabs.harvard.edu/abs/2017LaPhL..14b5002T

    [57] Chai Q, Liu Y, Zhang J et al. Asymmetric transmission and reflection spectra of FBG in single-multi-single mode fiber structure[J]. Optics Express, 23, 11665-11673(2015). http://europepmc.org/abstract/med/25969258

    [58] Jauregui C, Eidam T, Limpert J et al. Impact of modal interference on the beam quality of high-power fiber amplifiers[J]. Optics Express, 19, 3258-3271(2011). http://www.ncbi.nlm.nih.gov/pubmed/21369148

    [59] Zhu J, Zhou P, Ma Y et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 19, 18645-18654(2011). http://europepmc.org/abstract/med/21935233

    Yun Ye, Xiaolin Wang, Chen Shi, Hanwei Zhang, Xiaoming Xi, Pu Zhou, Xiaojun Xu. Research Progress in High Power Ytterbium Doped Fiber Laser Oscillator[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120006
    Download Citation