• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 2, 020605 (2023)
Jinghua JIANG and Xuewu CAO*
Author Affiliations
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.020605 Cite this Article
    Jinghua JIANG, Xuewu CAO. Simulation study of tritium atmospheric dispersion of loss of vacuum accident of a fusion reactor[J]. NUCLEAR TECHNIQUES, 2023, 46(2): 020605 Copy Citation Text show less
    References

    [1] Yamaguchi M, Kitamura A, Oda Y et al. Predicting the long-term 137Cs distribution in Fukushima after the Fukushima Dai-ichi nuclear power plant accident: a parameter sensitivity analysis[J]. Journal of Environmental Radioactivity, 135, 135-146(2014).

    [2] NING Shasha, SHAN Zheng, LIU Aihua et al. LOCA I-131 source term analysis for the proposed Taohuajiang AP1000 NPP[J]. Nuclear Techniques, 35, 69-73(2012).

    [3] YAN Zheng, WU Xinmin, DENG Lei et al. An M-C model to simulate airborne radioactive material dispersion in nuclear accident[J]. Nuclear Techniques, 34, 193-198(2011).

    [4] Leelőssy Á, Mészáros R, Lagzi I. Short and long term dispersion patterns of radionuclides in the atmosphere around the Fukushima Nuclear Power Plant[J]. Journal of Environmental Radioactivity, 102, 1117-1121(2011).

    [5] Sawan M E, Abdou M A. Physics and technology conditions for attaining tritium self-sufficiency for the DT fuel cycle[J]. Fusion Engineering and Design, 81, 1131-1144(2006).

    [6] Taylor N. Preliminary safety report (RPrS)[R](2011).

    [7] OGAWA Y. Assessment on safety and security (reassurance) for fusion plant[C], 1-27(2013).

    [8] Raskob W. Doses from accidental releases of tritium and activation products into the atmosphere[J]. Journal of Fusion Energy, 12, 149-156(1993).

    [9] Raskob W, Hasemann I. Results of dose calculations for NET accidental and normal operation releases of tritium and activation products[M]. Kernforschungszentrum Karlsruhe(1992).

    [10] Taylor N P, Raskob W. Updated accident consequence analyses for ITER at cadarache[J]. Fusion Science and Technology, 52, 359-366(2007).

    [11] Cortes P, Iseli M, Taylor N. Sensitivity studies on the accidental impact of 1 G of tritium for ITER site specific characteristics[J]. Fusion Science and Technology, 60, 865-868(2011).

    [12] Nie B J, Ni M Y, Jiang J Q et al. A dynamic modeling 3H transfer to the environment under accidental release from the fusion reactor[J]. Journal of Fusion Energy, 34, 739-745(2015).

    [13] NIE Baojie, NI Muyi, LIAN Chao et al. Development and verification of tritium atmospheric dispersion program based on turbulent diffusion theory[J]. Atomic Energy Science and Technology, 47, 541-546(2013).

    [14] TONG Zhiquan[M]. Atmospheric environmental impact assessment(1991).

    [16] GU Qing, LI Yunsheng[M]. Calculation method of atmospheric environment model(2002).

    [17] SONG Miaofa, QIANG Yizhong[M]. Fundamentals of nuclear environmentology(1999).

    [18] LUO Zhengming. The reflection of H+, D+ and T+ from surface of solids[J]. Acta Physica Sinica, 39, 1520-1530(1990).

    [19] Brown R M, Ogram G L, Spencer F S. Field studies of HT behaviour in the environment: 1. dispersion and oxidation in the atmosphere[J]. Fusion Technology, 14, 1165-1169(1988).

    [20] O'kula K R, East J M, Marx D R. A posteriori verification and validation of a tritium dispersion & consequence model 1[ED/OL]. https://www.semanticscholar.org

    Jinghua JIANG, Xuewu CAO. Simulation study of tritium atmospheric dispersion of loss of vacuum accident of a fusion reactor[J]. NUCLEAR TECHNIQUES, 2023, 46(2): 020605
    Download Citation