• Laser & Optoelectronics Progress
  • Vol. 58, Issue 9, 0923001 (2021)
Yuncheng Wang1, Da Teng1、*, Juyuan Hu1, Feifei Wang1, Tianzi Xu1, Congyan Ruan1, Yiqiang Li1, Yinghao Zhao1, Jinjin Ou1, and Kai Wang2
Author Affiliations
  • 1College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou , Henan 450044, China
  • 2Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    DOI: 10.3788/LOP202158.0923001 Cite this Article Set citation alerts
    Yuncheng Wang, Da Teng, Juyuan Hu, Feifei Wang, Tianzi Xu, Congyan Ruan, Yiqiang Li, Yinghao Zhao, Jinjin Ou, Kai Wang. Subwavelength Transmission Properties of Graphene- and Metal-Coated Nanowires[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0923001 Copy Citation Text show less
    References

    [1] Wang Y L, Zhao B, Min C J et al. Research progress of femtosecond surface plasmon polariton[J]. Chinese Physics B, 29, 027302(2020).

    [2] Fang Y R, Sun M T. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits[J]. Light: Science & Applications, 4(2015).

    [3] Xiong X, Zou C L, Ren X F et al. Silver nanowires for photonics applications[J]. Laser & Photonics Reviews, 7, 901-919(2013).

    [4] Wei H, Pan D, Zhang S P et al. Plasmon waveguiding in nanowires[J]. Chemical Reviews, 118, 2882-2926(2018).

    [5] Hu Q, Xu D H, Zhou Y et al. Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip[J]. Scientific Reports, 3, 3095(2013).

    [6] Teng D, Cao Q, Li S et al. Tapered dual elliptical plasmon waveguides as highly efficient terahertz connectors between approximate plate waveguides and two-wire waveguides[J]. Journal of the Optical Society of America A, 31, 268-273(2014).

    [7] Yang H Y, Chen Y P, Xiao G L et al. MIM tunable plasmonic filter embedded with symmetrical sector metal resonator[J]. Acta Optica Sinica, 40, 1124001(2020).

    [8] Xiao G L, Dou W Y, Yang H Y et al. Band-stop filter based on metal-insulator-metal waveguide with asymmetric circular resonant cavities[J]. Acta Optica Sinica, 39, 0513001(2019).

    [9] Kumar A, Gosciniak J, Volkov V S et al. Dielectric-loaded plasmonic waveguide components: going practical[J]. Laser & Photonics Reviews, 7, 938-951(2013).

    [10] Yan M, Qiu M. Guided plasmon polariton at 2D metal corners[J]. Journal of the Optical Society of America B, 24, 2333-2342(2007).

    [11] Oulton R F, Sorger V J, Genov D A et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2, 496-500(2008).

    [12] Sun M, Tian J P, Li L. Mode properties of a coaxial multi-layer hybrid surface plasmon waveguide[J]. Physica Status Solidi (b), 252, 1884-1889(2015).

    [13] Wang F, Zhang L, Ma T et al. A symmetrical wedge-to-wedge THz hybrid SPPs waveguide with low propagation loss[J]. Acta Physica Sinica, 69, 074205(2020).

    [14] Huang T J, Yin L Z, Zhao J et al. Amplifying evanescent waves by dispersion-induced plasmons: defying the materials limitation of the superlens[J]. ACS Photonics, 7, 2173-2181(2020).

    [15] Gao Y X, Shadrivov I V. Second harmonic generation in graphene-coated nanowires[J]. Optics Letters, 41, 3623-3626(2016).

    [16] Xiao S Y, Wang T, Liu T T et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials[J]. Carbon, 126, 271-278(2018).

    [17] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 332, 1291-1294(2011).

    [18] He X Y, Gao P Q, Shi W Z. A further comparison of graphene and thin metal layers for plasmonics[J]. Nanoscale, 8, 10388-10397(2016).

    [19] Zhuang H, Kong F, Li K et al. Plasmonic bandpass filter based on graphene nanoribbon[J]. Applied Optics, 54, 2558-2564(2015).

    [20] Wu Y X, Wu W Q, Dai X Y. SPPs in a double layer graphene system with an anisotropic dielectric[J]. Results in Physics, 15, 102718(2019).

    [21] Liu P H, Zhang X Z, Ma Z H et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 21, 32432-32440(2013).

    [22] Li Y, Zhang H F, Wu Q et al. Theoretical analysis of single dielectric loaded two-sheet graphene symmetric surface plasmon waveguide[J]. Laser & Optoelectronics Progress, 56, 202413(2019).

    [23] Xiao B G, Qin K, Xiao S S et al. Metal-loaded graphene surface plasmon waveguides working in the terahertz regime[J]. Optics Communications, 355, 602-606(2015).

    [24] Gao Y X, Ren G B, Zhu B F et al. Analytical model for plasmon modes in graphene-coated nanowire[J]. Optics Express, 22, 24322-24331(2014).

    [25] Teng D, Wang Y C, Guo J K et al. Study on modal properties of graphene-coated elliptical nanowire pairs[J]. Laser & Optoelectronics Progress, 57, 232303(2020).

    [26] Liu J P, Zhai X, Wang L L et al. Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide[J]. Plasmonics, 11, 703-711(2016).

    [27] Teng D, Wang K, Huan Q S et al. High-performance light transmission based on graphene plasmonic waveguides[J]. Journal of Materials Chemistry C, 8, 6832-6838(2020).

    [28] Wei Z Z, Xue W R, Peng Y L et al. Mode characteristics of waveguides based on three graphene-coated dielectric nanowires[J]. Acta Optica Sinica, 39, 0124001(2019).

    [29] Zhu B F, Ren G B, Yang Y et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 10, 839-845(2015).

    [30] Teng D, Wang K, Li Z et al. Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range[J]. Optics Express, 27, 12458-12469(2019).

    [31] Huang Y X, Zhang L, Yin H et al. Graphene-coated nanowires with a drop-shaped cross section for 10  nm confinement and 1  mm propagation[J]. Optics Letters, 42, 2078-2081(2017).

    [32] Teng D, Wang K, Li Z et al. Graphene gap plasmonic waveguide for deep-subwavelength transmission of mid-infrared waves[J]. Acta Optica Sinica, 40, 0623002(2020).

    [33] Teng D, Ma W S, Yang Y D et al. Study on subwavelength transmission properties of triangular-shaped graphene-coated nanowires on substrate[J]. Acta Optica Sinica, 40, 1324002(2020).

    [34] Teng D, Wang K, Li Z. Graphene-coated nanowire waveguides and their applications[J]. Nanomaterials, 10, 229(2020).

    [35] Wu D, Tian J P, Yang R C. Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate[J]. Journal of Nonlinear Optical Physics & Materials, 27, 1850013(2018).

    [36] Yang J F, Yang J J, Huang M. Single-mode cylindrical graphene plasmon waveguide[J]. Modern Physics Letters B, 30, 1650268(2016).

    [37] Yu P C, Fesenko V I, Tuz V R. Dispersion features of complex waves in a graphene-coated semiconductor nanowire[J]. Nanophotonics, 7, 925-934(2018).

    [38] Tassin P, Koschny T, Kafesaki M et al. A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics[J]. Nature Photonics, 6, 259-264(2012).

    [39] Yang H U, D'Archangel J, Sundheimer M L et al. Optical dielectric function of silver[J]. Physical Review B, 91, 235137(2015).

    [40] Yang J, Cao Q, Zhou C H. Theory for terahertz plasmons of metallic nanowires with sub-skin-depth diameters[J]. Optics Express, 18, 18550-18557(2010).

    [41] Zhang J F, Hong Q L, Zou J L et al. Fano-resonance in hybrid metal-graphene metamaterial and its application as mid-infrared plasmonic sensor[J]. Micromachines, 11, 268(2020).

    [42] Gan C H, Chu H S, Li E P. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid-infrared and terahertz frequencies[J]. Physical Review B, 85, 125431(2012).

    [43] Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities[J]. Physical Review Letters, 105, 256805(2010).

    [44] Gao Y X, Shadrivov I V. Nonlinear coupling in graphene-coated nanowires[J]. Scientific Reports, 6, 38924(2016).

    [45] Epstein I, Alcaraz D, Huang Z Q et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes[J]. Science, 368, 1219-1223(2020).

    Yuncheng Wang, Da Teng, Juyuan Hu, Feifei Wang, Tianzi Xu, Congyan Ruan, Yiqiang Li, Yinghao Zhao, Jinjin Ou, Kai Wang. Subwavelength Transmission Properties of Graphene- and Metal-Coated Nanowires[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0923001
    Download Citation