• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516003 (2022)
Yushi Chu1、2, Jianzhong Zhang1、*, and Gang-Ding Peng3
Author Affiliations
  • 1Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang , China
  • 2Fiber Optical Sensing Center for Excellence, Yantai Research Institute, Harbin Engineering University, Yantai 264006, Shandong , China
  • 3School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney NSW 2052, Australia
  • show less
    DOI: 10.3788/LOP202259.1516003 Cite this Article Set citation alerts
    Yushi Chu, Jianzhong Zhang, Gang-Ding Peng. Research Progress in Application of Additive Manufacturing in Special Silica Optical Fibers Fabrication[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516003 Copy Citation Text show less
    References

    [1] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 113, 1151-1158(1966).

    [2] Kapron F P, Keck D B, Maurer R D. Radiation losses in glass optical waveguides[J]. Applied Physics Letters, 17, 423-425(1970).

    [3] MacChesney J B, O’Connor P B, Presby H M. A new technique for the preparation of low-loss and graded-index optical fibers[J]. Proceedings of the IEEE, 62, 1280-1281(1974).

    [4] Miya T, Terunuma Y, Hosaka T et al. Ultimate low-loss single-mode fibre at 1.55 μm[J]. Electronics Letters, 15, 106-108(1979).

    [5] Mears R J, Reekie L, Jauncey I M et al. Low-noise erbium-doped fibre amplifier operating at 1.54 μm[J]. Electronics Letters, 23, 1026-1028(1987).

    [6] Lian Z G, Chen X, Wang X et al. Preparation and potential applications of microstructured and integrated functional optical fibers[J]. Laser & Optoelectronics Progress, 56, 170615(2019).

    [7] Geittner P, Küppers D, Lydtin H. Low-loss optical fibers prepared by plasma-activated chemical vapor deposition (CVD)[J]. Applied Physics Letters, 28, 645-646(1976).

    [8] Schultz P C. Fabrication of optical waveguides by the outside vapor deposition process[J]. Proceedings of the IEEE, 68, 1187-1190(1980).

    [9] Izawa T, Sudo S, Hanawa F. Continuous fabrication process for high-silica fiber preforms[J]. IEICE Transactions, 62, 779-785(1979).

    [10] Knight J C, Birks T A, Russell P S et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 21, 1547-1549(1996).

    [11] Birks T A, Knight J C, Russell P S. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 22, 961-963(1997).

    [12] Russell P S J. Photonic crystal fibers[J]. Science, 299, 358-362(2003).

    [13] Zhang Y M, Qiu J R. Fabrication and application of special optical fibers using Melt-in-Tube method[J]. Laser & Optoelectronics Progress, 56, 170601(2019).

    [14] Shen X D[M]. Inorganic non-metallic materials for 3D printing(2020).

    [15] Cook K, Canning J, Leon-Saval S et al. Air-structured optical fiber drawn from a 3D-printed preform[J]. Optics Letters, 40, 3966-3969(2015).

    [16] Cook K, Balle G, Canning J et al. Step-index optical fiber drawn from 3D printed preforms[J]. Optics Letters, 41, 4554-4557(2016).

    [17] Chu Y S, Fu X H, Luo Y H et al. Silica optical fiber drawn from 3D printed preforms[J]. Optics Letters, 44, 5358-5361(2019).

    [18] Chu Y S, Fu X H, Luo Y H et al. Additive manufacturing fiber preforms for structured silica fibers with bismuth and erbium dopants[J]. Light: Advanced Manufacturing, 3, 1-7(2022).

    [19] Camacho-Rosales A L, Núñez-Velázquez M, Sahu J K. 3D printed Er-doped silica fibre by direct ink writing[J]. EPJ Web of Conferences, 243, 20002(2020).

    [20] Camacho-Rosales A, Núñez-Velázquez M, Zhao X et al. Development of 3-D printed silica preforms[C](2019).

    [21] Camacho Rosales A L, Núñez Velázquez M M A, Zhao X et al. Optical fibers fabricated from 3D printed silica preforms[J]. Proceedings of SPIE, 11271, 112710U(2020).

    [22] Klein J, Stern M, Franchin G et al. Additive manufacturing of optically transparent glass[J]. 3D Printing and Additive Manufacturing, 2, 92-105(2015).

    [23] Kotz F, Plewa K, Bauer W et al. Liquid glass: a facile soft replication method for structuring glass[J]. Advanced Materials, 28, 4646-4650(2016).

    [24] Kotz F, Arnold K, Bauer W et al. Three-dimensional printing of transparent fused silica glass[J]. Nature, 544, 337-339(2017).

    [25] Kotz F, Schneider N, Striegel A et al. Glassomer: processing fused silica glass like a polymer[J]. Advanced Materials, 30, 1707100(2018).

    [26] Liu C, Qian B, Ni R P et al. 3D printing of multicolor luminescent glass[J]. RSC Advances, 8, 31564-31567(2018).

    [27] Zhang D, Xiao W G, Liu C et al. Highly efficient phosphor-glass composites by pressureless sintering[J]. Nature Communications, 11, 2805(2020).

    [28] Moore D G, Barbera L, Masania K et al. Three-dimensional printing of multicomponent glasses using phase-separating resins[J]. Nature Materials, 19, 212-217(2020).

    [29] Nguyen D T, Meyers C, Yee T D et al. 3D-printed transparent glass[J]. Advanced Materials, 29, 1701181(2017).

    [30] Cooperstein I, Shukrun E, Press O et al. Additive manufacturing of transparent silica glass from solutions[J]. ACS Applied Materials & Interfaces, 10, 18879-18885(2018).

    [31] Destino J F, Dudukovic N A, Johnson M A et al. 3D printed optical quality silica and silica-titania glasses from sol-gel feedstocks[J]. Advanced Materials Technologies, 3, 1700323(2018).

    [32] Sasan K, Lange A, Yee T D et al. Additive manufacturing of optical quality germania-silica glasses[J]. ACS Applied Materials & Interfaces, 12, 6736-6741(2020).

    [33] Doualle T, André J C, Gallais L. 3D printing of silica glass through a multiphoton polymerization process[J]. Optics Letters, 46, 364-367(2021).

    [34] Mader M, Schlatter O, Heck B et al. High-throughput injection molding of transparent fused silica glass[J]. Science, 372, 182-186(2021).

    [35] Toombs J T, Luitz M, Cook C C et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography[J]. Science, 376, 308-312(2022).

    [36] Peng G D, Luo Y H, Zhang J Z et al. 3D silica lithography for future optical fiber fabrication[M]. Peng G D. Handbook of Optical Fibers, 1-17(2019).

    [37] Chu Y S, Canning J, Fu X H et al. 3D printed optical preforms from silica contained resin[J]. Proceedings of SPIE, 11206, 112061L(2019).

    [38] Chu Y S, Fu X H, Luo Y H et al. 3D printed silica optical fibre-a “game changer” technology in optical fibre manufacture[C], SoM3H.6(2020).

    [39] Zheng B L, Wang J H, Yan P H et al. Fabrication of silica leakage channel microstructured optical fiber based on 3D printed preforms[J]. Proceedings of SPIE, 11665, 116651R(2021).

    [40] Zheng B L, Yang J, Qi F X et al. Fabrication of Yb-doped silica micro-structured optical fibers from UV-curable nano-composites and their application in temperature sensing[J]. Journal of Non-Crystalline Solids, 573, 121129(2021).

    Yushi Chu, Jianzhong Zhang, Gang-Ding Peng. Research Progress in Application of Additive Manufacturing in Special Silica Optical Fibers Fabrication[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516003
    Download Citation