• Opto-Electronic Engineering
  • Vol. 48, Issue 9, 210167 (2021)
Wang Jian1、2, Liu Junbo1, and Hu Song1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2021.210167 Cite this Article
    Wang Jian, Liu Junbo, Hu Song. Source optimization based on adaptive nonlinear particle swarm method in lithography[J]. Opto-Electronic Engineering, 2021, 48(9): 210167 Copy Citation Text show less
    References

    [1] Wong A K K. Resolution Enhancement Techniques in Optical Lithography[M]. Bellingham, Washington: SPIE Press, 2001.

    [2] Melville D, Rosenbluth A E, Waechter A, et al. Computational lithography. 2011.

    [3] Liebmann L W. Resolution enhancement techniques in optical lithography: It's not just a mask problem[J]. Proc SPIE, 2001, 4409: 23–32.

    [4] Mack C. Fundamental Principles of Optical Lithography[M]. Chichester, West Sussex: Wiley, 2007.

    [5] Peng Y, Zhang J Y, Wang Y, et al. High performance source optimization using a gradient-based method in optical lithography[C]//2010 11th International Symposium on Quality Electronic Design, San Jose, CA, USA, 2010: 108–113.

    [6] Rosenbluth A E, Seong N. Global optimization of the illumination distribution to maximize integrated process window[J]. Proc SPIE, 2006, 6154: 61540H.

    [7] Ma X, Arce G R. Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography[J]. Opt Express, 2009, 17(7): 5783–5793.

    [8] Peng Y, Zhang J Y, Wang Y, et al. Gradient-based source and mask optimization in optical lithography[J]. IEEE Trans Image Process, 2011, 20(10): 2856–2864.

    [9] Jia N N, Lam E Y. Pixelated source mask optimization for process robustness in optical lithography[J]. Opt Express, 2011, 19(20): 19384–19398.

    [10] Li J, Lam E Y. Robust source and mask optimization compensating for mask topography effects in computational lithography[J]. Opt Express, 2014, 22(8): 9471–9485.

    [11] Shen Y J, Peng F, Zhang Z R. Semi-implicit level set formulation for lithographic source and mask optimization[J]. Opt Express,2019, 27(21): 29659–29668.

    [12] Ma X, Zheng X Q, Arce G R. Fast inverse lithography based on dual-channel model-driven deep learning[J]. Opt Express, 2020, 28(14): 20404–2042.

    [13] Ma X, Wang Z Q, Lin H J, et al. Optimization of lithography source illumination arrays using diffraction subspaces[J]. Opt Express, 2018, 26(4): 3738–3755.

    [14] Fühner T, Erdmann A, Farkas R, et al. Genetic algorithms to improve mask and illumination geometries in lithographic imaging systems[C]//Applications of Evolutionary Computing, Coimbra, Portugal, 2004: 208–218.

    [15] Born M, Wolf E. Principles of Optics[M]. Cambridge: Cambridge University Press, 2001.

    [16] Saleh B E A, Rabbani M. Simulation of partially coherent imagery in the space and frequency domains and by modal expansion[J]. Appl Opt, 1982, 21(15): 2770–2777.

    [17] Zhang Z N, Li S K, Wang X Z, et al. Source mask optimization for extreme-ultraviolet lithography based on thick mask model and social learning particle swarm optimization algorithm[J]. Opt Express, 2021, 29(4): 5448–5465.

    Wang Jian, Liu Junbo, Hu Song. Source optimization based on adaptive nonlinear particle swarm method in lithography[J]. Opto-Electronic Engineering, 2021, 48(9): 210167
    Download Citation