• Journal of Semiconductors
  • Vol. 41, Issue 3, 032104 (2020)
He Li1, Menglin Huang1, and Shiyou Chen1、2
Author Affiliations
  • 1Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai 200241, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1088/1674-4926/41/3/032104 Cite this Article
    He Li, Menglin Huang, Shiyou Chen. First-principles exploration of defect-pairs in GaN[J]. Journal of Semiconductors, 2020, 41(3): 032104 Copy Citation Text show less
    References

    [1] S Nakamura, T Mukai, M Senoh. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl Phys Lett, 64, 1687(1994).

    [2] M H Kim, M F Schubert, Q Dai et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett, 91, 183507(2007).

    [3] S Pimputkar, J S Speck, S P DenBaars et al. Prospects for LED lighting. Nat Photonics, 3, 180(2009).

    [4] S T Sheppard, K Doverspike, W L Pribble et al. High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates. IEEE Electron Device Lett, 20, 161(1999).

    [5] S J Pearton, R Deist, F Ren et al. Review of radiation damage in GaN-based materials and devices. J Vac Sci Technol A, 31, 050801(2013).

    [6] J Wang, P Mulligan, L Brillson et al. Review of using gallium nitride for ionizing radiation detection. Appl Phys Rev, 2, 031102(2015).

    [7] S J Pearton, F Ren, E Patrick et al. Review-ionizing radiation damage effects on GaN devices. ECS J Solid State Sci Technol, 5, Q35(2015).

    [8] S J Pearton, Y S Hwang, F Ren. Radiation effects in GaN-based high electron mobility transistors. J Mater, 67, 1601(2015).

    [9] S M Khanna, D Estan, A Houdayer et al. Proton radiation damage at low temperature in GaAs and GaN light-emitting diodes. IEEE Trans Nucl Sci, 51, 3585(2004).

    [10] K Lorenz, M Peres, N Franco et al. Radiation damage formation and annealing in GaN and ZnO. Proc SPIE(2011).

    [11] A Y Polyakov, N B Smirnov, A V Govorkov et al. Neutron radiation effects in epitaxially laterally overgrown GaN films. J Electron Mater, 36, 1320(2007).

    [12]

    [13] J Nord, K Nordlund, J Keinonen. Molecular dynamics study of damage accumulation in GaN during ion beam irradiation. Phys Rev B, 68, 184104(2003).

    [14] F J Bryant, E Webster. Threshold energy for atomic displacement in cadmium telluride. Phys Status Solidi B, 21, 315(1967).

    [15] F J Bryant, A F J Cox, F C Frank. Experimental and calculated atomic displacement threshold energies for binary semiconductors. Proceedings of the Royal Society of London, Ser A, 310, 319(1969).

    [16] H J Von Bardeleben, J L Cantin, U Gerstmann et al. Identification of the nitrogen split interstitial (N-N)N in GaN. Phys Rev Lett, 109, 206402(2012).

    [17] C G Van de Walle, J Neugebauer. First-principles calculations for defects and impurities: Applications to III-nitrides. J Appl Phys, 95, 3851(2004).

    [18] M A Reshchikov, H Morkoç. Luminescence properties of defects in GaN. J Appl Phys, 97, 061301(2005).

    [19] J L Lyons, A Alkauskas, A Janotti et al. First-principles theory of acceptors in nitride semiconductors. Phys Status Solidi B, 252, 900(2015).

    [20] J L Lyons, C G Van de Walle. Computationally predicted energies and properties of defects in GaN. npj Comp Mater, 3, 12(2017).

    [21] A Y Polyakov, I H Lee. Deep traps in GaN-based structures as affecting the performance of GaN devices. Mater Sci Eng R, 94, 1(2015).

    [22] T Mattila, R M Nieminen. Point-defect complexes and broadband luminescence in GaN and AlN. Phys Rev B, 55, 9571(1997).

    [23] I C Diallo, D O Demchenko. Native Point defects in GaN: a hybrid-functional study. Phys Rev Appl, 6, 064002(2016).

    [24] Y G Li, Y Yang, M P Short et al. IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry. Sci Rep, 5, 18130(2015).

    [25] L J Sham. Self-consistent equations including exchange and correlation effects. Phys Rev, 140, A1138(1965).

    [26] G Kresse, D Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 59, 1758(1999).

    [27] P E Blöchl. Projector augmented-wave method. Phys Rev B, 50, 17953(1994).

    [28] G Kresse, J Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 54, 11169(1996).

    [29] J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865(1996).

    [30] J Heyd, G E Scuseria, M Ernzerhof. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207(2003)]. J Chem Phys, 124, 219906(2006).

    [31] J Heyd, G E Scuseria, M Ernzerhof. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 118, 8207(2003).

    [32] B Monemar. Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys Rev B, 10, 676(1974).

    [33] S Lany, A Zunger. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs. Phys Rev B, 78, 235104(2008).

    [34] G Makov, M C Payne. Periodic boundary conditions in ab initio calculations. Phys Rev B, 51, 4014(1995).

    [35] J L Lyons, A Janotti, C G Walle. Carbon impurities and the yellow luminescence in GaN. Appl Phys Lett, 97, 152108(2010).

    [36] C Freysoldt, B Grabowski, T Hickel et al. First-principles calculations for point defects in solids. Rev Mod Phys, 86, 253(2014).

    He Li, Menglin Huang, Shiyou Chen. First-principles exploration of defect-pairs in GaN[J]. Journal of Semiconductors, 2020, 41(3): 032104
    Download Citation