• Photonics Research
  • Vol. 10, Issue 2, 524 (2022)
Eva A. A. Pogna1, Alessandra Di Gaspare1, Kimberly Reichel1, Chiara Liberatore1, Harvey E. Beere2, David A. Ritchie2, and Miriam S. Vitiello1、*
Author Affiliations
  • 1NEST, CNR-Istituto Nanoscienze—Scuola Normale Superiore, 56127 Pisa, Italy
  • 2Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
  • show less
    DOI: 10.1364/PRJ.440463 Cite this Article Set citation alerts
    Eva A. A. Pogna, Alessandra Di Gaspare, Kimberly Reichel, Chiara Liberatore, Harvey E. Beere, David A. Ritchie, Miriam S. Vitiello. Spatial coherence of electrically pumped random terahertz lasers[J]. Photonics Research, 2022, 10(2): 524 Copy Citation Text show less
    References

    [1] L. Mandel, E. Wolf. Optical Coherence and Quantum Optics(1995).

    [2] B. Redding, M. A. Choma, H. Cao. Speckle-free laser imaging using random laser illumination. Nat. Photonics, 6, 355-359(2012).

    [3] https://www.sciencedirect.com/topics/physics-and-astronomy/holography. https://www.sciencedirect.com/topics/physics-and-astronomy/holography

    [4] Y. Deng, D. Chu. Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays. Sci. Rep., 7, 5893(2017).

    [5] https://web.archive.org/web/20090505080533/http://www1.eere.energy.gov/buildings/ssl/comparing.html. https://web.archive.org/web/20090505080533/http://www1.eere.energy.gov/buildings/ssl/comparing.html

    [6] D. S. Mehta, K. Saxena, S. K. Dubey, C. Shakher. Coherence characteristics of light-emitting diodes. J. Lumin., 130, 96-102(2010).

    [7] F. J. Duarte. Coherent electrically excited organic semiconductors: visibility of interferograms and emission linewidth. Opt. Lett., 32, 412-414(2007).

    [8] T. M. Rohith, H. Farrokhi, J. Boonruangkan, Y. J. Kim. Spatial coherence reduction for speckle free imaging using electroactive rotational optical diffusers. Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1-2(2017).

    [9] H. Zhang, K. Wiklund, M. Andersson, T. Stangner, T. Dahlberg. Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser. Appl. Opt., 56, 5427-5435(2017).

    [10] H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, R. P. H. Chang. Spatial confinement of laser light in active random media. Phys. Rev. Lett., 84, 5584-5587(2000).

    [11] H. Cao. Random lasers: development, features and applications. Opt. Photon. News, 16, 24-29(2005).

    [12] D. S. Wiersma. The physics and applications of random lasers. Nat. Phys., 4, 359-367(2008).

    [13] R. Sapienza. Determining random lasing action. Nat. Rev. Phys., 1, 690-695(2019).

    [14] B. Wunsch, T. Stauber, F. Sols, F. Guinea. Dynamical polarization of graphene at finite doping. New J. Phys., 8, 318(2006).

    [15] H. Cao, J. Y. Xu, Y. Ling, A. L. Burin. Lasing in disordered media. Quantum Electronics and Laser Science Conference, 1(2002).

    [16] D. Grigsby, G. Zhu, J. Novak, M. Bahoura, M. A. Noginov. Optimization of the transport mean free path and the absorption length in random lasers with non-resonant feedback. Opt. Express, 13, 8829-8836(2005).

    [17] B. Redding, H. Cao, M. A. Choma. Spatial coherence of random laser emission. Opt. Lett., 36, 3404-3406(2011).

    [18] B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, M. O. Scully. A narrow-band speckle-free light source via random Raman lasing. J. Mod. Opt., 63, 46-49(2015).

    [19] H. Cao, Y. Ling, J. Y. Xu, A. L. Burin. Probing localized states with spectrally resolved speckle techniques. Phys. Rev. E, 66, 025601(2002).

    [20] S. García-Revilla, J. Fernández, M. Barredo-Zuriarrain, E. Pecoraro, M. A. Arriandiaga, I. Iparraguirre, J. Azkargorta, R. Balda. Coherence characteristics of random lasing in a dye doped hybrid powder. J. Lumin., 169, 472-477(2016).

    [21] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain. Laser action in strongly scattering media. Nature, 368, 436-438(1994).

    [22] M. Peruzzo, M. Gaio, R. Sapienza. Tuning random lasing in photonic glasses. Opt. Lett., 40, 1611-1614(2015).

    [23] X. Meng, K. Fujita, S. Murai, J. Konishi, M. Mano, K. Tanaka. Random lasing in ballistic and diffusive regimes for macroporous silica-based systems with tunable scattering strength. Opt. Express, 18, 12153-12160(2010).

    [24] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, R. P. H. Chang. Random laser action in semiconductor powder. Phys. Rev. Lett., 82, 2278-2281(1999).

    [25] A. Migus, C. Gouedard, C. Sauteret, D. Husson, F. Auzel. Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders. J. Opt. Soc. Am. B, 10, 2358-2363(1993).

    [26] H. K. Liang, B. Meng, G. Z. Liang, Q. J. Wang, Y. Zhang. Electrically pumped mid-infrared random lasers. Adv. Mater., 25, 6859-6863(2013).

    [27] G. Liang, Q. J. Wang, Y. Zeng. Random lasers in the mid-infrared and terahertz regimes. Laser Science 2017, LTh4F.1(2017).

    [28] S. Biasco, H. E. Beere, D. A. Ritchie, L. Li, A. G. Davies, E. H. Linfield, M. S. Vitiello. Frequency-tunable continuous-wave random lasers at terahertz frequencies. Light Sci. Appl., 8, 43(2019).

    [29] S. Schönhuber, M. Brandstetter, T. Hisch, C. Deutsch, M. Krall, H. Detz, A. M. Andrews, G. Strasser, S. Rotter, K. Unterrainer. Random lasers for broadband directional emission. Optica, 3, 1035-1038(2016).

    [30] Y. Zeng, G. Liang, H. Liang, S. Mansha, B. Meng, T. Liu, X. Hu, J. Tao, L. Li, A. Davies, E. Linfield, Y. Zhang, Y. Chong, Q. Wang. Designer multimode localized random lasing in amorphous lattices at terahertz frequencies. ACS Photon., 3, 2453-2460(2016).

    [31] Y. Zeng, G. Liang, B. Qiang, K. Wu, J. Tao, X. Hu, L. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, Y. Chong, Q. J. Wang. Two-dimensional multimode terahertz random lasing with metal pillars. ACS Photon., 5, 2928-2935(2018).

    [32] K. S. Reichel, E. A. A. Pogna, S. Biasco, L. Viti, A. Di Gaspare, H. E. Beere, D. A. Ritchie, M. S. Vitiello. Self-mixing interferometry and near-field nanoscopy in quantum cascade random lasers at terahertz frequencies. Nanophotonics, 10, 1495-1503(2021).

    [33] D. M. Mittleman. Twenty years of terahertz imaging [Invited]. Opt. Express, 26, 9417-9431(2018).

    [34] H. Nishii, T. Nagatsuma, T. Ikeo. Terahertz imaging based on optical coherence tomography [Invited]. Photon. Res., 2, B64-B69(2014).

    [35] E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, N. R. Newbury. Speckle phase noise in coherent laser ranging: fundamental precision limitations. Opt. Lett., 39, 4776-4779(2014).

    [36] B. Redman, R. Chellappa, S. Der. Simulation of error in optical radar range measurements. Appl. Opt., 36, 6869-6874(1997).

    [37] A. Di Gaspare, M. S. Vitiello. Polarization analysis of random THz lasers. APL Photon., 6, 070805(2021).

    [38] B. J. Pearson, N. Ferris, R. Strauss, H. Li, D. P. Jackson. Measurements of slit-width effects in Young’s double-slit experiment for a partially-coherent source. OSA Contin., 1, 755-763(2018).

    [39] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1999).

    [40] A. Khalatpour, A. K. Paulsen, C. Deimert, Z. R. Wasilewski, Q. Hu. High-power portable terahertz laser systems. Nat. Photonics, 15, 16-20(2021).

    [41] L. Bosco, M. Franckié, G. Scalari, M. Beck, A. Wacker, J. Faist. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl. Phys. Lett., 115, 010601(2019).

    [42] M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori. Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations. Appl. Phys. Lett., 89, 021111(2006).

    Eva A. A. Pogna, Alessandra Di Gaspare, Kimberly Reichel, Chiara Liberatore, Harvey E. Beere, David A. Ritchie, Miriam S. Vitiello. Spatial coherence of electrically pumped random terahertz lasers[J]. Photonics Research, 2022, 10(2): 524
    Download Citation