• Photonics Research
  • Vol. 8, Issue 8, 1316 (2020)
Xueyan Li1、2, Shibiao Wei2, Guiyuan Cao2, Han Lin2、4、*, Yuejin Zhao1、5、*, and Baohua Jia2、3、6、*
Author Affiliations
  • 1Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Centre for Translational Atomaterials (CTAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
  • 3The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
  • 4e-mail: hanlin@swin.edu.au
  • 5e-mail: yjzhao@bit.edu.cn
  • 6e-mail: bjia@swin.edu.au
  • show less
    DOI: 10.1364/PRJ.397262 Cite this Article Set citation alerts
    Xueyan Li, Shibiao Wei, Guiyuan Cao, Han Lin, Yuejin Zhao, Baohua Jia. Graphene metalens for particle nanotracking[J]. Photonics Research, 2020, 8(8): 1316 Copy Citation Text show less
    References

    [1] J. C. Crocker, D. G. Grier. Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys. Rev. Lett., 73, 352-355(1994).

    [2] S. Kim, E. A. A. Nollen, K. Kitagawa, V. P. Bindokas, R. I. Morimoto. Polyglutamine protein aggregates are dynamic. Nat. Cell Biol., 4, 826-831(2002).

    [3] D. M. Chudakov, V. V. Verkhusha, D. B. Staroverov, E. A. Souslova, S. Lukyanov, K. A. Lukyanov. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol., 22, 1435-1439(2004).

    [4] X. Michalet, S. Weiss, M. Jäger. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem. Rev., 106, 1785-1813(2006).

    [5] C. Gardiner, Y. J. Ferreira, R. A. Dragovic, C. W. Redman, I. L. Sargent. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J. Extracellular Vesicles, 2, 19671(2013).

    [6] R. A. Dragovic, C. Gardiner, A. S. Brooks, D. S. Tannetta, D. J. P. Ferguson, P. Hole, B. Carr, C. W. G. Redman, A. L. Harris, P. J. Dobson. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine, 7, 780-788(2011).

    [7] W. J. Greenleaf, M. T. Woodside, S. M. Block. High-resolution, single-molecule measurements of biomolecular motion. Annu. Rev. Biophys. Biomol. Struct., 36, 171-190(2007).

    [8] H. P. Babcock, C. Chen, X. Zhuang. Using single-particle tracking to study nuclear trafficking of viral genes. Biophys. J., 87, 2749-2758(2004).

    [9] I. F. Sbalzarini, P. Koumoutsakos. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol., 151, 182-195(2005).

    [10] E. Meijering, O. Dzyubachyk, I. Smal. Methods for cell and particle tracking. Methods Enzymology, 504, 183-200(2012).

    [11] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [12] F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932-4936(2012).

    [13] X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, M. Gu. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun., 6, 8433(2015).

    [14] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [15] F. Qin, K. Huang, J. Wu, J. Teng, C. W. Qiu, M. Hong. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater., 29, 1602721(2017).

    [16] T. Yang, H. Lin, B. Jia. Ultrafast direct laser writing of 2D materials for multifunctional photonics devices. Chin. Opt. Lett., 18, 023601(2020).

    [17] Y. Wang, W. Yun, C. Jacobsen. Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature, 424, 50-53(2003).

    [18] H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, T. W. Odom. Broadband plasmonic microlenses based on patches of nanoholes. Nano Lett., 10, 4111-4116(2010).

    [19] M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, F. Capasso. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett., 15, 5358-5362(2015).

    [20] X. T. Kong, A. Khan, P. Kidambi, S. Deng, Y. Ali, B. Dlubak, P. Hiralal, H. Butt. Graphene-based ultrathin flat lenses. ACS Photon., 2, 200-207(2015).

    [21] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [22] Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, X. Luo. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photon. Rev., 12, 1800064(2018).

    [23] X. Li, S. Wei, H. Lin, Y. Zhao, B. Jia. Imaging rule of diffractive ultrathin flat lens. Proc. SPIE, 11440, 1144007(2020).

    [24] G. Cao, X. Gan, H. Lin, B. Jia. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto Electron. Adv., 1, 180012(2018).

    [25] G. Cao, H. Lin, S. Fraser, X. Zheng, B. Del, Z. Gan, B. Jia. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environment. ACS Appl. Mater. Interfaces, 11, 20298-20303(2019).

    [26] Y. Yang, H. Lin, B. Y. Zhang, Y. Zhang, X. Zheng, A. Yu, M. Hong, B. Jia. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photon., 6, 1033-1040(2019).

    [27] H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, B. Jia. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics, 13, 270-276(2019).

    [28] D. An, A. Warning, K. G. Yancey, C. T. Chang, V. R. Kern, A. K. Datta, P. H. Steen, D. Luo, M. Ma. Mass production of shaped particles through vortex ring freezing. Nat. Commun., 7, 12401(2016).

    [29] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    [30] E. G. Loewen, M. Neviere, D. Maystre. Grating efficiency theory as it applies to blazed and holographic gratings. Appl. Opt., 16, 2711-2721(1977).

    CLP Journals

    [1] Shibiao Wei, Guiyuan Cao, Han Lin, Haoran Mu, Wenbo Liu, Xiaocong Yuan, Michael Somekh, Baohua Jia. High tolerance detour-phase graphene-oxide flat lens[J]. Photonics Research, 2021, 9(12): 2454

    [2] Han Lin, Scott Fraser, Minghui Hong, Manish Chhowalla, Dan Li, Baohua Jia. Near-perfect microlenses based on graphene microbubbles[J]. Advanced Photonics, 2020, 2(5): 055001

    [3] Jiaran Qi, Yongheng Mu, Shaozhi Wang, Zhiying Yin, Jinghui Qiu. Birefringent transmissive metalens with an ultradeep depth of focus and high resolution[J]. Photonics Research, 2021, 9(3): 308

    Xueyan Li, Shibiao Wei, Guiyuan Cao, Han Lin, Yuejin Zhao, Baohua Jia. Graphene metalens for particle nanotracking[J]. Photonics Research, 2020, 8(8): 1316
    Download Citation