• Photonic Sensors
  • Vol. 11, Issue 1, 69 (2021)
Yongkang DONG*
Author Affiliations
  • National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
  • show less
    DOI: 10.1007/s13320-021-0616-7 Cite this Article
    Yongkang DONG. High-Performance Distributed Brillouin Optical Fiber Sensing[J]. Photonic Sensors, 2021, 11(1): 69 Copy Citation Text show less
    References

    [1] A. Barrias, J. R. Casaas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors, 2016, 16(5): 748.

    [2] X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors, 2011, 11(4): 4152–4187.

    [3] S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, et al., “Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum,” Optics Express, 2017, 25(15): 17727–17736.

    [4] K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technology Letters, 2002, 14(2): 179–181.

    [5] X. Bao, A. Brown, M. DeMerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Optics Letters, 1999, 24(8): 510.

    [6] A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technology Letters, 17(7): 1501–1503.

    [7] K. Kishida, C. Li, and Nishiguchi, “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” SPIE, 5855: 559–562.

    [8] W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Optics Express, 2008, 16(26): 21616–21625.

    [9] Y. Dong, H. Zhang, L. Chen, and X. Bao, “2cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Applied Optics, 2012, 51(9): 1229–1235.

    [10] A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor,” Optics Letters, 2017, 42(10): 1903.

    [11] S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” Journal of Lightwave Technology, 2011, 28(20): 2993–3003.

    [12] A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing laser,” Laser & Photonics Reviews, 2012, 6(5): L1–L5.

    [13] R. Cohen, Y. London, Y. Antman, and A. Zadok, “Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission,” Optics Express, 2014, 22(10): 12070–12078.

    [14] D. Ba, Y. Li, X. Zhang, J. Yan, and Y. Dong, “Phase-coded Brillouin optical correlation domain analysis with 2-mm resolution based on phase-shift keying,” Optics Express, 2019, 27(25): 36197.

    [15] J. Zhang, C. Feng, M. Zhang, Y. Liu, C. Wu, and Y. Wang, “Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature,” Optics Express, 2018, 26(6): 6962–6972.

    [16] K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on brillouin optical correlation domain analysis and beat lock-in detection scheme,” in 18th International Conference Optical Fiber Sensors, Mexico, 2006, ThC2.

    [17] H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, et al., “Recent progress in fast distributed Brillouin optical fiber sensing,” Applied Science, 2018, 8: 1820.

    [18] C. Jin, N. Guo, Y. Feng, L. Wang, H. Liang, J. Li, et al., “Scanning-free BOTDA based on ultra-fine digital optical frequency comb,” Optics Express, 2015, 23(4): 5277–5284.

    [19] J. Fang, P. Xu, Y. Dong, and W. Shieh, “Single-shot distributed Brillouin optical time domain analyzer,” Optics Express, 2017, 25(13): 15188–15198.

    [20] D. Zhou, Y. Dong, and J. Yao, “Truly distributed and ultra-fast microwave photonic fiber-optic sensor,” Journal of Lightwave Technology, 2020, 38(15): 4150–4159.

    [21] C. Jin, L. Wang, Y. Chen, N. Guo, W. Chung, H. Au, et al., “Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer,” Optics Express, 2017, 25(8): 9213–9224.

    [22] Z. Liang, J. Pan, S. Gao, Q. Sui, Y. Feng, F. Li, et al., “Spatial resolution improvement of single-shot digital optical frequency comb-based Brillouin optical time domain analysis utilizing multiple pump pulses,” Optics Letters, 2018, 43(15): 3534–3537.

    [23] R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Optics Letters, 2009, 34(17): 2613–2615.

    [24] Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Optics Express, 2011, 19(21): 19845–19854.

    [25] A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technology Letters, 2014, 26(8): 797–800.

    [26] D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, et al., “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Optics Express, 2016, 24(9): 9781–9793.

    [27] X. B. Tu, H. Luo, Q. Sun, X. Y. Hu, and Z. Meng, “Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers,” Journal of Optics, 2015, 17(10): 105503.

    [28] J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Optics Express, 2012, 20(24): 26942–26949.

    [29] D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, et al., “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Optics Express, 2017, 25(3): 1889–1902.

    [30] Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Optics Express, 2012, 20(8): 8584–8591.

    [31] D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, et al., “Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agility modulation,” IEEE Photonics Technology Letters, 2017, 9(3): 1–8.

    [32] Q. Chu, B. Wang, H. Wang, D. Ba, and Y. Dong, “Fast Brillouin optical time-domain analysis using frequency-agile and compressed sensing,” Optics Letters, 2020, 45(15): 4365–4368.

    [33] B. Wang, Z. Hua, C. Pang, D. Zhou, D. Ba, D. Lin, et al., “Fast Brillouin optical time-domain reflectometry based on the frequency-agile technique,” Journal of Lightwave Technology, 2020, 38(4): 946–952.

    [34] D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, et al., “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light: Science & Applications, 2018, 7(1): 32.

    [35] Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, et al., “150 km fast BOTDA based on the optical chirp chain probe wave and Brillouin loss scheme,” Optics Letters, 2018, 43(19): 4679–4682.

    [36] B. Wang, B. Fan, D. Zhou, C. Pang, Y. Li, D. Ba, et al., “High-performance optical chirp chain BOTDA by using a pattern recognition algorithm and the differential pulse-width pair technique,” Photonics Research, 2019, 7(6): 652–658.

    [37] D. Ba, B. Wang, T. Li, Y. Li, D. Zhou, and Y. Dong, “Fast Brillouin optical time-domain reflectometry using the optical chirp chain reference wave,” Optics Letters, 2020, 45(19): 5460–5463.

    [38] J. Zhang, H. Zheng, H. Wu, N. Guo, G. Yin, and T. Zhu, “Vector optical-chirp-chain Brillouin optical time-domain analyzer based on complex principal component analysis,” Optics Express, 2020, 28(20): 28831–28842.

    [39] Y. Dong and X. Bao, “Impacts of Kerr effect and fiber dispersion on long-range Brillouin optical timedomain analysis systems,” in International Conference on Optical Fiber Sensor, China, 2012, pp. 84219Z-1–84219Z-4.

    [40] K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Physical Review Letters, 1986, 56(2): 135.

    [41] A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez- Herraez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Optics Express, 2015, 23(8): 10341–10352.

    [42] L. Thevenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Optics Express, 2013, 21(12): 14017–14035.

    [43] Y. Dong, L. Chen, and X. Bao, “System optimization of a long-range Brillouin-loss-based distributed fiber sensor,” Applied Optics, 2010, 49(27): 5020–5025.

    [44] X. H. Jia, Y. J. Rao, L. Chen, C. Zhang, and Z. L. Ran, “Enhanced sensing performance in long distance Brillouin optical time-domain analyzer based on Raman amplification: theoretical and experimental investigation,” Journal of Lightwave Technology, 2010, 28: 1624–1630.

    [45] M. A. Soto, G. Bolognini, and F. D. Pasquale, “Optimization of long range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Optics Express, 2011, 19(5): 4444–4457.

    [46] X. Angulo-Vinuesa, S. Martin-Lopez, J. Nu-o, P. Corredera, J. D. Aniacasta-on, L. Thévenaz, et al., “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2 ℃ uncertainty,” Journal of Lightwave Technology, 2012, 30(8):1060–1065.

    [47] Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100km sensing length,” Optics Letters, 2011, 36(2): 277–279.

    [48] Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” Journal of Lightwave Technology, 2012, 30(8): 1161–1167.

    [49] A. M. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Optics Letters, 2010, 35(2): 259–261.

    [50] A. M. Soto, G. Bolognini, and F. D. Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Optical Letters, 2011, 36(2): 232–234.

    [51] A. M. Soto, M. Taki, and G. Bolognini, “Simplexcoded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technology Letters, 2012, 24(20): 1823–1826.

    [52] J. J. Mompó, J. Urricelqui, and A. Loayssa, “Brillouin optical time-domain analysis sensor with pump pulse amplification,” Optics Express, 2016, 24(12): 12672–12681.

    [53] M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nature Communications, 2016, 7(1): 10870.

    [54] S. Le Floch, F. Sauser, M. Llera and E. Rochat, “Novel Brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses,” Journal of Lightwave Technology, 2014, 33(12): 2623–2627.

    [55] X. H. Jia, H. Q. Chang, K. Lin, C. Xu, and J. G. Wu, “Frequency-comb-based BOTDA sensors for high-spatial-resolution/long-distance sensing,” Optics Express, 2017, 25(6): 6997–7007.

    [56] M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Optimizing image denoising for long-range Brillouin distributed fiber sensing,” Journal of Lightwave Technology, 2017, 36(4): 1168–1177.

    [57] B. Wang, L. Wang, C. Yu, and C. Lu, “Long-distance BOTDA sensing systems using video-BM3D denoising for both static and slowly varying environment,” Optics Express, 2019, 27(25): 36100–36113.

    [58] X. Sun, Z. Yang, X. Hong, S. Zaslawski, S. Wang, M. A. Soto, and L. Thévenaz, “Genetic-optimised aperiodic code for distributed optical fibre sensors,” Nature Communications, 2020, 11(1): 1–11.

    [59] Z. Zhu, D. J. Gauthier, and R. W. Boyd, “ Stored light in an optical fiber via stimulated Brillouin scattering,” Science, 2007, 318(5857): 1748–1750.

    [60] Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarizationmaintaining fibers based on transient Brillouin grating,” Optics Letters, 2010, 35(2): 193–195.

    [61] Y. Dong, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Long-Range and high-spatial-resolution distributed birefringence measurement of a polarizationmaintaining fiber based on Brillouin dynamic grating,” Journal of Lightwave Technology, 2013, 31(16): 2681–2686.

    [62] Y. H. Kim and K. Y. Song, “Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating,” Optics Express, 2014, 22: 17292–17302.

    [63] Y. H. Kim and K. Y. Song, “Characterization of nonlinear temperature dependence of Brillouin dynamic grating spectra in polarization-maintaining fibers,” Journal of Lightwave Technology, 2015, 33(23): 4922–4927.

    [64] A. Li, Q. Hu, X. Chen, B. Y. Kim, and W. Shieh, “Characterization of distributed modal birefringence in a few-mode fiber based on Brillouin dynamic grating,” Optical Letters, 2014, 39: 3153–3156.

    [65] T. Jiang, D. Zhou, M. Xia, L. Teng, D. Ba, and Y. Dong, “Distributed birefringence measurement of a polarization-maintaining fiber with an extended range based on an enhanced Brillouin dynamic grating,” IEEE Photonics Journal, 2020, 12(4): 7102507.

    [66] V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Optical Letters, 2008, 33: 2848–2850.

    [67] K. Y. Song, K. Lee, and S. B. Lee, “Tunable optical delays based on Brillouin dynamic grating in optical fibers,” Optics Express, 2009, 17(12): 10344–10349.

    [68] S. Chin and L. Thevenaz, “Tunable photonic delay lines in optical fibers,” Laser & Photonics Reviews, 2012, 6(6): 724–738.

    [69] M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thevenaz, “All-optical signal processing using dynamic Brillouin gratings,” Scientific Reports, 2013, 3: 1594.

    [70] J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, et al., “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Optics Express, 2012, 20: 6157–6162.

    [71] L. Ursini and M. Santagiustina, “Applications of the dynamic Brillouin gratings to ultrawideband communications,” IEEE Photonics Technology Letters, 25(14): 1347–1349.

    [72] J. J. Guo, M. Li, Y. Deng, N. Huang, J. Liu, and N. Zhu, “Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings,” Optics Express, 2014, 22(4): 4290–4300.

    [73] Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, and X. Bao, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Optics Letters, 2014, 39(10): 2967–2970.

    [74] Y. Dong, L. Teng, P. Tong, T. Jiang, H. Zhang, T. Zhu, et al., “High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings,” Optical Letters, 2015, 40(21): 5003–5006.

    [75] L. Teng, H. Zhang, Y. Dong, D. Zhou, T. Jiang, W. Gao, et al., “Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization- maintaining photonics crystal fiber based on Brillouin dynamic gratings,” Optical Letters, 2016, 41(18): 4413–4416.

    [76] H. Zhang, L. Teng, and Y. Dong, “Distributed salinity sensor with a polyimide-coated photonics crystal fiber based on Brillouin dynamic grating,” Journal of Lightwave Technology, 2020, 99: 5219–5224.

    [77] Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarizationmaintaining photonic crystal fiber,” Optical Letters, 2009, 34(17): 2590–2592.

    [78] Y. Dong, L. Chen, and X. Bao, “High-spatialresolution time domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization- maintaining fiber,” IEEE Photonics Technology Letters, 2010, 22(18): 1364–1366.

    [79] K. Y. Song, S. Chin, N. Primerov, and L. Thevenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” Journal of Lightwave Technology, 2010, 28(14): 2062–2067.

    [80] S. Chin, N. Primerov, and L. Thevenaz, “Subcentimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sensors Journal, 2012, 12(1): 189–194.

    [81] W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technology Letters, 2010, 22(8): 526–528.

    [82] A. Bergman, L. Yaron, T. Langer, and M. Tur, “Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings,” Journal of Lightwave Technology, 2015, 33(12): 2611–2616.

    [83] M. Pang, X. Jiang, W. He, G. K. L. Wong, G. Onishchukov, N. Y. Joly, et al., “Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core,” Optica, 2015, 2: 339–342.

    [84] N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science, 2018, 360(6393): 1113–1116.

    [85] E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nature Photonics, 2018, 12(10): 613–619.

    [86] A. Butsch, J. R. Koehler, R. E. Noskov, and P. S. J. Russell, “CW-pumped single-pass frequency comb generation by resonant opto-mechanical nonlinearity in dual-nanoweb fiber,” Optica, 2014, 1: 158.

    [87] K. Shiraki and M. Ohashi, “Sound velocity measurement based on guided acoustic-wave Brillouin scattering,” IEEE Photonics Technology Letters, 1992, 4: 1177–1180.

    [88] Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technology Letters, 1998, 10: 1769–1771.

    [89] Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technology Letters, 1999, 11(7): 865–867.

    [90] Y. Antman, A. Clain, Y. London, and A. Zadok, “Opto-mechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica, 2016, 3(5): 510–516.

    [91] D. M. Chow, M. A. Soto, and L. Thévenaz, “Frequency-domain technique to measure the inertial response of forward stimulated Brillouin scattering for acoustic impedance sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), South Korea, 2017, pp. 10323.

    [92] G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Opto-mechanical time-domain reflectometry,” Nature Communications, 2018, 9(1): 2991.

    [93] D. M. Chow, Z. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nature Communications, 2018, 9(1): 2990.

    [94] C. Pang, Z. Hua, D. Zhou, H. Zhang, L. Chen, X. Bao, et al., “Opto-mechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing,” Optica, 2020, 7(2): 176–184.

    [95] B. Wang, Y. Dong, D. Ba, and X. Bao, “High spatial resolution: an integrative review of its developments on the Brillouin optical time-and correlation-domain analysis,” Measurement Science and Technology, 2020, 31(5): 052001.

    [96] A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20 mm spatial resolution,” Journal of Lightwave Technology, 2007, 25(1): 381–386.

    [97] K. Kishida and C. H. Li, “Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system,” Structural Health Monitoring and Intelligent Infrastructure, 2005, 1: 471–477.

    [98] J. C. Beugnot, M. Tur, S. F. Mafang, and L. Tevenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Optics Express, 2011, 19(8): 7381–7397.

    [99] K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber with a high spatial resolution using a novel correlation-based technique: demonstration of 45cm spatial resolution,” in 13th International Conference on Optical Fiber Sensors, Kyongju, 1999, pp. 337–340.

    [100] ] Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, et al., “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics Journal, 2013, 5(3): 2600407.

    Yongkang DONG. High-Performance Distributed Brillouin Optical Fiber Sensing[J]. Photonic Sensors, 2021, 11(1): 69
    Download Citation