• Infrared and Laser Engineering
  • Vol. 50, Issue 9, 20210283 (2021)
Haoran Lv, Yihua Bai, Ziwei Ye, Miao Dong, and Yuanjie Yang*
Author Affiliations
  • College of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less
    DOI: 10.3788/IRLA20210283 Cite this Article
    Haoran Lv, Yihua Bai, Ziwei Ye, Miao Dong, Yuanjie Yang. Generation of optical vortex beams via metasurfaces (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210283 Copy Citation Text show less
    References

    [1] Gbur G J. Singular Optics[M]. US: CRC Press Tayl & Francis Group, 2017.

    [2] M Yao, M J Padgett. Orbital angular momentum: origins, behavior and applications. Adv Opt Photon, 3, 161(2011).

    [3] J F Nye, M V Berry. Dislocations in wave trains. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 336, 165-190(1974).

    [4] P Coullet, G Gil, F Rocca. Optical vortices. Opt Commun, 73, 403-408(1989).

    [5] L Allen, M W Beijersbergen, R J C Spreeuw, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 45, 8185(1992).

    [6] M W Beijersbergen, L Allen, H Vanderveen, et al. Astigmatic laser mode converters and transfer of orbital angular-momentum. Opt Commun, 96, 123(1993).

    [7] J Arlt, K Dholakia. Generation of high-order Bessel beams by use of an axicon. Opt Commun, 177, 297-301(2000).

    [8] A S Ostrovsky, C Rickenstorff-Parrao, V Arrizón. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt Lett, 38, 534-536(2013).

    [9] Y J Yang, Y Dong, C L Zhao, et al. Generation and propagation of an anomalous vortex beam. Opt Lett, 38, 5418-5421(2013).

    [10] N Bozinovic, Y Yue, Y Ren, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [11] J Wang, J Y Yang, I M Fazal, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics, 6, 488-496(2012).

    [12] H Zhang, X Z Li, H X Ma, et al. Grafted optical vortex with controllable orbital angular momentum distribution. Optics Express, 27, 22930(2019).

    [13] D G Grier. A Revolution in optical manipulation. Nature, 424, 810-816(2003).

    [14] M E J Friese, T A Nieminen, N R Heckenberg, et al. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394, 348-350(1998).

    [15] Y J Yang, Q Zhao, L L Liu, et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates. Phys Rev Appl, 12, 064007(2019).

    [16] A Mair, A Vaziri, G Weihs, et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [17] T Stav, A Faerman, E Maguid, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science, 361, 1101-1103(2018).

    [18] M Lavery, F C Speirits, S M Barnett, et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [19] D Gauthier, P R Ribic, G Adhikary, et al. Tunable orbital angular momentum in high-harmonic generation. Nat Commun, 8, 14971(2017).

    [20] F Kong, C Zhang, F Bouchard, et al. Controlling the orbital angular momentum of high harmonic vortices. Nat Commun, 8, 14970(2017).

    [21] Zhongyi Guo, Chaofan Gong, Hongjun Liu, et al. Research advances of orbital angular momentum based optical communication technology. Opto-Electronic Engineering, 47, 90-123(2020).

    [22] T Wang, F Wang, F Shi, et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler. J Lightwave Technol, 35, 2161-2166(2017).

    [23] M W Beijersbergen, R P C Coerwinkel, M Kristensen, et al. Helical-wavefront laser beams produced with a spiral phaseplate. Opt Commun, 112, 321-327(1994).

    [24] V Bazhenov, M Vasnetsov, M Soskin. Laser beams with screw dislocations in their wavefronts. Jetp Letter, 52, 429-431(1990).

    [25] C Rosales-Guzmán, N Bhebhe, A Forbes. Simultaneous generation of multiple vector beams on a single SLM. Opt Express, 25, 25697-25706(2017).

    [26] M J Padgett, L Allen. Orbital angular momentum exchange in cylindrical-lens mode converters. J Opt B: Quantum Semiclass Opt, 4, S17-S19(2002).

    [27] X L Cai, J W Wang, M J Strain, et al. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [28] R Marqués, J Martel, F Mesa, et al. A new 2D isotropic left-handed metamaterial design: Theory and experiment. Microw Opt Techn Let, 35, 405-408(2002).

    [29] C L Holloway, E F Kuester, J Baker-Jarvis, et al. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE T Antenn and Propag, 51, 2596-2603(2003).

    [30] A Sihvola. Metamaterials in electromagnetics. Metamaterials, 1, 2-11(2007).

    [31] E Shamonina, L Solymar. Metamaterials: How the subject started. Metamaterials, 1, 12-18(2007).

    [32] M Lapine, S Tretyakov. Contemporary notes on metamaterials. Iet Microw Antenna P, 1, 3-11(2007).

    [33] C L Holloway, E F Kuester, A J O’Hara, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antenn and Propag M, 54, 10-35(2012).

    [34] H T Chen, A J Taylor, N Yu. A review of metasurfaces: Physics and applications. Rep Prog Phys, 79, 076401(2016).

    [35] N F Yu, G Patrice, M Kats, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 334, 333(2011).

    [36] X J Ni, N K Emani, A V Kildishev, et al. Broadband light bending with plasmonic nanoantennas. Science, 335, 427(2012).

    [37] S Sun, Q He, S Xiao, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Materials, 11, 426-431(2012).

    [38] F Aieta, P Genevet, N Yu, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett, 12, 1702-1706(2012).

    [39] H Cheng, Z Liu, S Chen, et al. Emergent functionality and controllability in few-layer metasurfaces. Adv Mater, 27, 5410-5421(2015).

    [40] L Novotny, N V Hulst. Antennas for light. Nat Photon, 5, 83-90(2011).

    [41] P Bharadwaj, B Deutsch, L Novotny. Optical Antennas. Adv Opt Photon, 1, 438-483(2009).

    [42] J Lin, J P B Mueller, Q Wang, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331-334(2013).

    [43] B Walther, C Helgert, C Rockstuhl, et al. Spatial and spectral light shaping with metamaterials. Adv Mater, 24, 6300-6304(2012).

    [44] X W Wang, Z Q Nie, Y Liang, et al. Recent advances on optical vortex generation. Nanophotonics, 7, 1533-1556(2018).

    [45] S Q Chen, Z Li, Y B Zhang, et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv Optical Mater, 6, 1800104(2018).

    [46] A Arbabi, A Faraon. Fundamental limits of ultrathin metasurfaces. A Sci Rep, 7, 43722(2017).

    [47] J Sun, X Wang, T Xu, et al. Spinning light on the nanoscale. Nano Lett, 14, 2726(2014).

    [48] M Kim, A M H Wong, G V Eleftheriades. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys Rev X, 4, 41042(2014).

    [49] F Monticone, N M Estakhri, A Alù. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett, 110, 203903(2013).

    [50] M Decker, I Staude, M Falkner, et al. High-efficiency dielectric Huygens’ surface. Adv Opt Mater, 3, 813(2015).

    [51] Q Zhao, J Zhou, F Zhang, et al. Mie resonance-based dielectric metamaterials. Mater Today, 12, 60(2009).

    [52] L Zhou, W Withayachumnankul, C M Shah, et al. Dielectric resonator nanoantennas at visible frequencies. Opt Express, 21, 1344(2013).

    [53] A Arbabi, Y Horie, A J Ball, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays. Nat Commun, 6, 7069(2015).

    [54] P Genevet, F Capasso, F Aieta, et al. Recent advances in planar optics: from plasmonic to dielectric metasrfaces. Optica, 4, 139-152(2017).

    [55] K E Chong, I Staude, A James, et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett, 15, 5369-5374(2015).

    [56] Y J Yang, X Zhu, J Zeng, et al. Anomalous Bessel vortex beam: Modulating orbital angular momentum with propagation. Nanophotonics, 7, 677-682(2018).

    [57] H Wang, L Liu, C Zhou, et al. Vortex beam generation with variable topological charge based on a spiral slit. Nanophotonics, 8, 317-324(2019).

    [58] J R Zhang, Z Y Guo, R Z Li, et al. Circular polarization analyzer based on the combined coaxial Archimedes’spiral structure. Plasmonics, 10, 1255-1261(2015).

    [59] O Tomoki, M Shintaro. Study of surface plasmon chirality induced by Archimedes’ spiral grooves. Opt Express, 14, 6285-6290(2006).

    [60] M Onoda, S Murakami, N Nagaosa. Hall effect of light. Phys Rev Lett, 93, 083901(2004).

    [61] G X Li, M Kang, S M Chen, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett, 13, 4148-4151(2013).

    [62] S W Moon, H D Jeong, S Lee, et al. Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation. Opt Express, 27, 19119-19129(2019).

    [63] C F Chen, C T Ku, Y H Tai, et al. Creating optical near-field orbital angular momentum in a gold metasurface. Nano Lett, 15, 2746-2750(2015).

    [64] B Tang, B Zhang, J Ding. Generating a plasmonic vortex field with arbitrary topological charges and positions by meta-nanoslits. Appl Optics, 58, 833-840(2019).

    [65] Q L Tan, Q H Guo, H C Liu, et al. Controlling plasmonic orbital angular momentum by combining geometric and dynamic phase. Nanoscale, 9, 4944-4949(2017).

    [66] H Kim, J Park, S W Cho, et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Letters, 10, 529-536(2010).

    [67] S Lee, S Kim, H Kwon, et al. Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits. IEEE Photonic Tech Lett, 27, 705-708(2015).

    [68] S Pancharatnam. Generalized theory of interference and its applications. Indian Acad Sci, 44, 398-417(1956).

    [69] M V Berry. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 392, 45-57(1984).

    [70] S Y Teng, Q Zhang, H Wang, et al. Conversion between polarization states based on a metasurface. Photonics Res, 7, 246(2019).

    [71] E Karimi, S A Schulz, I D Leon, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci Appl, 3, e167(2014).

    [72] Y C Zhang, W W Liu, J Gao, et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Adv Optical Mater, 6, 1701228(2018).

    [73] Z W Li, J M Hao, L R Huang, et al. Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes. Opt Express, 24, 8788-8796(2016).

    [74] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spintobital angular momentum conversion of light [J]. Science, 2017, 358: 896901.

    [75] Y H Guo, M B Pu, Z Y Zhao. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics, 3, 2022-2099(2016).

    [76] J Zhou, Y Liu, Y Ke, et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phase. Opt Lett, 40, 3193(2015).

    [77] Q Fan, D Wang, P Huo, et al. Autofocusing Airy beams generated by all-dielectric metasurface for visible light. Opt Express, 25, 9285(2017).

    [78] S Chen, Y Cai, G Li, et al. Geometric metasurface fork gratings for vortex-beam generation and manipulation. Laser Photon Rev, 10, 322(2016).

    [79] L Zhang, S Liu, L Li, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces. ACS Appl Mater Interfaces, 9, 36447(2017).

    [80] F Yue, D Wen, C Zhang, et al. Multichannel polarization controllable superpositions of orbital angular momentum states. Adv Mater, 29, 1603838(2017).

    [81] K Y Bliokh. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. Phys Rev Lett, 97, 43901(2006).

    [82] S Xiao, J Wang, F Liu, et al. Spin-dependent optics with metasurfaces. Nanophotonics, 6, 215(2017).

    [83] X Ling, X Zhou, K Huang, et al. Recent advances in the spin Hall effect of light. Rep Prog Phys, 80, 664011(2017).

    [84] N Shitrit, I Yulevich, E Maguid, et al. Spin-optical metamaterial route to spin-controlled photonics. Science, 340, 724(2013).

    [85] X Ling, X Zhou, X Yi, et al. Giant photonics spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci Appl, 4, e290(2015).

    [86] D Gabor. A new microscopic principle. Nature, 161, 117(1948).

    [87] W Cathey. Phase holograms, phase-only holograms, and kinoforms. Appl Opt, 9, 1478(1970).

    [88] K Huang, H Gao, G Cao, et al. Design of diffractive phase element for modulating the electric field at the out-of-focus plane in a lens system. Appl Opt, 51, 5149(2012).

    [89] L Huang, X Chen, H Mühlenbernd, et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun, 4, 2808(2013).

    [90] P Genevet, F Capasso. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys, 78, 24401(2015).

    [91] X Ni, A V Kildishev, V M Shalaev. Metasurface holograms for visible light. Nat Commun, 4, 2807(2013).

    [92] K Huang, H Liu, S Restuccia, et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. Light Sci Appl, 7, 17156(2018).

    [93] C Min, J Liu, T Lei, et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photon Rev, 10, 978(2016).

    [94] A Zhan, S Colburn, R Trivedi, et al. Low-contrast dielectric metasurface optics. ACS Photonics, 3, 209(2016).

    [95] A E Willner, H Huang, Y Yan, et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics, 7, 66-106(2015).

    [96] J J Jin, M B Pu, Y Q Wang, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial. Adv Mater Technol, 2, 1600201(2017).

    [97] N Zhang, X C Yuan, R E Burge. Extending the detection range of optical vortices by Dammann vortex gratings. Opt Lett, 35, 3495(2010).

    [98] T Lei, M Zhang, Y R Li, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci Appl, 4, e257(2015).

    [99] S Q Chen, W W Liu, Z C Li, et al. Metasurface empowered optical multiplexing and multifunction. Adv Mater, 32, 1805912(2019).

    [100] W W Liu, Z C Li, H Cheng, et al. Momentum analysis for metasurfaces. Phys Rev Appl, 8, 014012(2017).

    [101] E Maguid, I Yulevich, D Veksler, et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science, 352, 1202(2016).

    [102] M Q Mehmood, S Mei, S Hussain, et al. Visible‐frequency metasurface for structuring and spatially multiplexing optical vortices. Adv Mater, 28, 2533(2016).

    [103] E Maguid, I Yulevich, M Yannai, et al. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci Appl, 6, e17027(2017).

    [104] C Zhang, F Yue, D Wen, et al. Multichannel metasurface for simultaneous control of holograms and twisted light beams. ACS Photonics, 4, 1906(2017).

    [105] D Lin, A L Holsteen, E Maguid, et al. Photonic multitasking interleaved Si nanoantenna phased array. Nano Lett, 16, 7671(2016).

    [106] J Zeng, L Li, X Yang, et al. Generating and separating twisted light by gradient–rotation split-ring antenna meatasurfaces. Nano Lett, 16, 3101(2016).

    [107] L L Huang, X Song, B Reineke, et al. Volumetric generation of optical vortices with metasurfaces. ACS Photonics, 4, 338-346(2017).

    CLP Journals

    [1] Yang Li, Chenchen Fan, Xiulu Hao, Xiaoya Ma, Tianfu Yao, Jiangming Xu, Xianglong Zeng, Pu Zhou. High-power vortex Raman fiber laser[J]. Infrared and Laser Engineering, 2023, 52(6): 20230292

    [2] Jiaqi Liu, Yongzhi Cheng, Fu Chen, Hui Luo, Xiangcheng Li. High-efficiency wavefront manipulation based on geometric phase metasurface for circularly polarized terahertz wave at two frequencies independently[J]. Infrared and Laser Engineering, 2023, 52(2): 20220377

    Haoran Lv, Yihua Bai, Ziwei Ye, Miao Dong, Yuanjie Yang. Generation of optical vortex beams via metasurfaces (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210283
    Download Citation