[1] A Calderaro, Conto F De, M Buttrini, G Piccolo, S Montecchini et al. Human respiratory viruses, including SARS-CoV-2, circulating in the winter season 2019–2020 in Parma, Northern Italy. Int J Infect Dis, 79-84(2021).
[4] G Brankston, L Gitterman, Z Hirji, C Lemieux, M Gardam. Transmission of influenza A in human beings. Lancet Infect Dis, 257-265(2007).
[5] JP Duguid. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. Epidemiol Infect, 471-479(1946).
[6] Y Liu, Z Ning, Y Chen, M Guo, YL Liu et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 557-560(2020).
[7] BJ Cowling, DKM Ip, VJ Fang, P Suntarattiwong, SJ Olsen et al. Aerosol transmission is an important mode of influenza A virus spread. Nat Commun, 1935(2013).
[8] NHL Leung. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol, 528-545(2021).
[10] Doremalen N Van, T Bushmaker, DH Morris, MG Holbrook, A Gamble et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med, 1564-1567(2020).
[11] B Bean, BM Moore, B Sterner, LR Peterson, ND Gerding et al. Survival of influenza viruses on environmental surfaces. J Infect Dis, 47-51(1982).
[12] P Zhou, XL Yang, XG Wang, B Hu, L Zhang et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 270-273(2020).
[13] HM Wise, A Foeglein, JC Sun, RM Dalton, S Patel et al. A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol, 8021-8031(2009).
[14] AJ Eisfeld, G Neumann, Y Kawaoka. At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol, 28-41(2015).
[15] Beltr·n JA Guerrero-, C·novas GV Barbosa-. Advantages and limitations on processing foods by UV light. Food Sci Technol Int, 137-147(2004).
[16] R Nishisaka-Nonaka, K Mawatari, T Yamamoto, M Kojima, T Shimohata et al. Irradiation by ultraviolet light-emitting diodes inactivates influenza a viruses by inhibiting replication and transcription of viral RNA in host cells. J Photochem Photobiol B, 193-200(2018).
[17] CW Lo, R Matsuura, K Iimura, S Wada, A Shinjo et al. UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins. Sci Rep, 13804(2021).
[18] F Bosshard, F Armand, R Hamelin, T Kohn. Mechanisms of human adenovirus inactivation by sunlight and UVC light as examined by quantitative PCR and quantitative proteomics. Appl Environ Microbiol, 1325-1332(2013).
[19] DA Sarigiannis, SP Karakitsios, MP Antonakopoulou, A Gotti. Exposure analysis of accidental release of mercury from compact fluorescent lamps (CFLs). Sci Total Environ, 306-315(2012).
[20] SS Nunayon, HH Zhang, ACK Lai. Comparison of disinfection performance of UVC-LED and conventional upper-room UVGI systems. Indoor Air, 180-191(2020).
[21] G Morrison, R Shaughnessy, S Shu. Setting maximum emission rates from ozone emitting consumer appliances in the United States and Canada. Atmos Environ, 2009-2016(2011).
[22] S Schalk, V Adam, E Arnold, K Brieden, A Voronov et al. UV-lamps for disinfection and advanced oxidation-lamp types, technologies and applications. IUVA News, 32-37(2006).
[23] DB >Li, K Jiang, XJ Sun, CL Guo. AlGaN photonics: recent advances in materials, and ultraviolet devices. Adv Opt Photonics, 43-110(2018).
[24] M Shatalov, WH Sun, A Lunev, XH Hu, A Dobrinsky et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express, 082101(2012).
[25] T Takano, T Mino, J Sakai, N Noguchi, K Tsubaki et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl Phys Express, 031002(2017).
[26] MA Khan, N Maeda, J Yun, M Jo, Y Yamada et al. Achieving 9.6% efficiency in 304 nm p-AlGaN UVB LED via increasing the holes injection and light reflectance. Sci Rep, 2591(2022).
[27] W Luo, T Li, YD Li, HJ Wang, Y Yuan et al. Watts-level ultraviolet-C LED integrated light sources for efficient surface and air sterilization. J Semicond, 072301(2022).
[28] A Suzuki, A Emoto, A Shirai, K Nagamatsu. Ultraviolet light-emitting diode (UV-LED) sterilization of citrus bacterial canker disease targeted for effective decontamination of citrus sudachi fruit. Biocontrol Sci, 1-7(2022).
[29] YW Lee, HD Yoon, JH Park, UC Ryu. Application of 265-nm UVC LED lighting to sterilization of typical gram negative and positive bacteria. J Korean Phys Soc, 1174-1178(2018).
[30] BS Kim, S Youm, YK Kim. Sterilization of harmful microorganisms in hydroponic cultivation using an ultraviolet LED light source. Sensor Mater, 3773-3785(2020).
[31] SY Huang, JC Lin, XQ Huang, WK Wang. Large-area 280 nm LED flexible sterilization light source with improved thermal performance. Optik, 168109(2021).
[32] K Oguma, S Rattanakul, M Masaike. Inactivation of health-related microorganisms in water using UV light-emitting diodes. Water Supply, 1507-1514(2019).
[33] SF Liu, W Luo, D Li, Y Yuan, W Tong et al. Sec-eliminating the SARS-CoV-2 by AlGaN based high power deep ultraviolet light source. Adv Funct Mater, 2008452(2021).
[34] M Bormann, M Alt, L Schipper, Sand L de, M Otte et al. Disinfection of SARS-CoV-2 contaminated surfaces of personal items with UVC-LED disinfection boxes. Viruses, 598(2021).
[35] H Shimoda, J Matsuda, T Iwasaki, D Hayasaka. Efficacy of 265-nm ultraviolet light in inactivating infectious SARS-CoV-2. J Photochem Photobiol, 100050(2021).
[36] Y Gerchman, H Mamane, N Friedman, M Mandelboim. UV-LED disinfection of Coronavirus: Wavelength effect. J Photochem Photobiol B, 112044(2020).
[37] H Inagaki, A Saito, H Sugiyama, T Okabayashi, S Fujimoto. Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation. Emerg Microbes Infect, 1744-1747(2020).
[38] M Kojima, K Mawatari, T Emoto, R Nishisaka-Nonaka, TKN Bui et al. Irradiation by a combination of different peak-wavelength ultraviolet-light emitting diodes enhances the inactivation of influenza A viruses. Microorganisms, 1014(2020).
[39] XJ Sun, DB Li, YR Chen, H Song, H Jiang et al. In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition. CrystEngComm, 6066-6073(2013).
[40] K Jiang, XJ Sun, JW Ben, YP Jia, HN Liu et al. The defect evolution in homoepitaxial AlN layers grown by high-temperature metal-organic chemical vapor deposition. CrystEngComm, 2720-2728(2018).
[41] LS Zhang, FJ Xu, JM Wang, CG He, WW Guo et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci Rep, 35934(2016).
[42] RG Banal, M Funato, Y Kawakami. Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Appl Phys Lett, 241905(2008).
[43] JW Ben, XJ Xun, YP Jia, K Jiang, ZM Shi et al. Defect evolution in AlN templates on PVD-AlN/sapphire substrates by thermal annealing. CrystEngComm, 4623-4629(2018).
[44] N Susilo, S Hagedorn, D Jaeger, H Miyake, U Zeimer et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl Phys Lett, 041110(2018).
[45] K Uesugi, S Kuboya, K Shojiki, SY Xiao, T Nakamura et al. 263 nm wavelength UV-C LED on face-to-face annealed sputter-deposited AlN with low screw- and mixed-type dislocation densities. Appl Phys Express, 055501(2022).
[46] H Miyake, CH Lin, K Tokoro, K Hiramatsu. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. J Cryst Growth, 155-159(2016).
[47] SY Xiao, R Suzuki, H Miyake, S Harada, T Ujihara. Improvement mechanism of sputtered AlN films by high-temperature annealing. J Cryst Growth, 41-44(2018).
[48] C Himwas, R Songmuang, LS Dang, J Bleuse, L Rapenne et al. Thermal stability of the deep ultraviolet emission from AlGaN/AlN Stranski-Krastanov quantum dots. Appl Phys Lett, 241914(2012).
[49] C Himwas, Hertog M den, E Bellet-Amalric, R Songmuang, F Donatini et al. Enhanced room-temperature mid-ultraviolet emission from AlGaN/AlN Stranski-Krastanov quantum dots. J Appl Phys, 023502(2014).
[50] SF Liu, Y Yuan, LJ Huang, J Zhang, T Wang et al. Drive high power UVC-LED wafer into low-cost 4-inch era: effect of strain modulation. Adv Funct Mater, 2112111(2022).
[51] K Jiang, XJ Sun, ZM Shi, H Zang, JW Ben et al. Quantum engineering of non-equilibrium efficient p-doping in ultra-wide band-gap nitrides. Light Sci Appl, 69(2021).
[52] QL Han, C Chang, L Li, C Klenk, JK Cheng et al. Sumoylation of influenza A virus nucleoprotein is essential for intracellular trafficking and virus growth. J Virol, 9379-9390(2014).
[53] HL Xiong, YT Wu, JL Cao, R Yang, YX Liu et al. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells. Emerg Microbes Infect, 2105-2113(2020).
[54] W Wen, C Chen, JK Tang, CY Wang, MY Zhou et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: a meta-analysis. Ann Med, 516-523(2022).
[55] M Matrosovich, T Matrosovich, W Garten, HD Klenk. New low-viscosity overlay medium for viral plaque assays. Virol J, 63(2006).
[56] JLR Zamora, V Ortega, GP Johnston, J Li, NM André et al. Third helical domain of the Nipah virus fusion glycoprotein modulates both early and late steps in the membrane fusion cascade. J Virol, e00644-20(2020).
[57] B Heying, EJ Tarsa, CR Elsass, P Fini, SP DenBaars et al. Dislocation mediated surface morphology of GaN. J Appl Phys, 6470-6476(1999).
[58] LY Peng, DG Zhao, F Liang, WJ Wang, ZS Liu et al. Influences of gallium and nitrogen partial pressure on step-bunching and step-meandering morphology of InGaN quantum barrier layer. Mater Today Commun, 102923(2021).
[59] T Hamachi, T Tohei, Y Hayashi, M Imanishi, S Usami et al. Propagation of threading dislocations and effects of Burgers vectors in HVPE-grown GaN bulk crystals on Na-flux-grown GaN substrates. J Appl Phys, 225701(2021).
[60] P Dong, JC Yan, Y Zhang, JX Wang, JP Zeng et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J Cryst Growth, 9-13(2014).
[61] CG He, W Zhao, HL Wu, S Zhang, K Zhang et al. High-quality AlN film grown on sputtered AlN/sapphire via growth-mode modification. Cryst Growth Des, 6816-6823(2018).
[62] B Liu, R Zhang, JG Zheng, XL Ji, DY Fu et al. Composition pulling effect and strain relief mechanism in AlGaN/AlN distributed Bragg reflectors. Appl Phys Lett, 261916(2011).
[63] K Jiang, XJ Sun, JW Ben, ZM Shi, YP Jia et al. Suppressing the compositional non-uniformity of AlGaN grown on a HVPE-AlN template with large macro-steps. CrystEngComm, 4864-4873(2019).
[64] DD LaBarre, RJ Lowy. Improvements in methods for calculating virus titer estimates from TCID50 and plaque assays. J Virol Methods, 107-126(2001).
[65] R Hirose, Y Itoh, H Ikegaya, H Miyazaki, N Watanabe et al. Differences in environmental stability among SARS-CoV-2 variants of concern: both omicron BA. Clin Microbiol Infect, 1486-1491(2022).