• Journal of Infrared and Millimeter Waves
  • Vol. 31, Issue 3, 203 (2012)
ZHANG ZhaoXian1、*, SHU XiaoZhou1, CHU JunHao1、2, and LI Zheng3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3724/sp.j.1010.2012.00203 Cite this Article
    ZHANG ZhaoXian, SHU XiaoZhou, CHU JunHao, LI Zheng. Accurate atmospheric transmittance model for O2 absorption band near 762 nm[J]. Journal of Infrared and Millimeter Waves, 2012, 31(3): 203 Copy Citation Text show less
    References

    [1] Smith W L. A polynomial representation of carbon dioxide and water vapor transmission[M]. Washington: ESSA Tech. Rep. NESC 47,1969.

    [2] Park J H, Russel III J M, Drayson R. Pressure sensing of the atmosphere by solar occultation using broadband CO2 absorption [J]. Appl. Opt.,1979,18(12):19501954.

    [3] Zhang Z. Remote sounding of the mixing ratio of carbon dioxide in the atmosphere from a satellite[J]. Opt. Eng.,1993,32(3):602607.

    [4] McMillin L M, Fleming H E. Atmospheric transmittance of an absorbing gas: a computationally fast and accurate transmittance model for absorbing gases with constant mixing rations in inhomogeneous, atmosphere[J]. Appl. Opt.,1976,15(2):358363.

    [5] Fleming H E, McMillin L M. Atmospheric transmittance of an absorbing gas. 2: a computationally fast and accurate transmittance model for slant paths at different incident angles[J]. Appl. Opt.,1977,16(5):13661370.

    [6] McMillin L M, Fleming H E, Hill M L. Atmospheric transmittance of an absorbing gas. 3:a computationally fast and accurate transmittance model for absorbing gases with variable mixing ratios[J]. Appl. Opt.,1979,18(10):16001606.

    [7] McMillin L M, Crone L J, Goldberg M D, et al. Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable mixing ratios at variable viewing angles[J]. Appl. Opt.,1995,34(27):62696274.

    [8] McMillin L M, Crone L J, Kleepspies T J. Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach[J]. Appl. Opt.,1995,34(36):83968399.

    [9] Weinreb M P, Fleming H E, McMilling L M, et al. Transmittances for the TIROS Operational Vertical Sounder [M]. Washington: NOAA Tech. Rep. NESC85,1981.

    [10] Eyre J R. A fast radiative transfer model for satellite sounding systems[C]. Reading, U, K.: ECMWF Res. Dep. Tech. Mem.176,1991.

    [11] Pierlussie J. H. Tsai ChangMing. Molecular transmittance band model for oxygen in the visible[J]. Appl. Opt.1986,25(15):24582460.

    [12] COESA (U. S. Committee on Extension to the Standard Atmosphere). U. S. Standard Atmosphere,1976[M]. Washington: U. S. Government Printing Office,1976.

    [13] Zhang Z. Remote sounding of atmospheric pressure profile from space, Part 1: Principle[J]. J. Appl. Remote Sensing.,2010,4:043521.

    [14] Zhang Z, Lin T, Chu J. Remote sounding of atmospheric pressure profile from space, Part 2: Channel selection[J]. J. Appl. Remote Sensing.,2010,4:04352.

    [15] Zhang Z, Lin T, Chu J. Remote sounding of atmospheric pressure profile from space, Part 3: Error estimation[J]. J. Appl. Remote Sensing.,2010,4:043536 .

    [16] Liu C, Liu W. Atmospheric Radiation[M]. Nanjing: Nanjing University Publishing House,1990.

    [17] Yin H. Improvement of kdistribution precision for calculating the transmission of satellite remote sensing channel[J]. J. of Appl. Meteorol. Science.2005,16:811819.

    ZHANG ZhaoXian, SHU XiaoZhou, CHU JunHao, LI Zheng. Accurate atmospheric transmittance model for O2 absorption band near 762 nm[J]. Journal of Infrared and Millimeter Waves, 2012, 31(3): 203
    Download Citation