• Opto-Electronic Engineering
  • Vol. 51, Issue 1, 230284-1 (2024)
Dongdong Zhao1, Dunhan Xie1, Peng Chen1、*, Ronghua Liang1, Yi Shen1, and Xinxin Guo2
Author Affiliations
  • 1College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 2Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
  • show less
    DOI: 10.12086/oee.2024.230284 Cite this Article
    Dongdong Zhao, Dunhan Xie, Peng Chen, Ronghua Liang, Yi Shen, Xinxin Guo. Lightweight YOLOv5 sonar image object detection algorithm and implementation based on ZYNQ[J]. Opto-Electronic Engineering, 2024, 51(1): 230284-1 Copy Citation Text show less
    References

    [1] G Guo, X K Wang, H P Xu. Review on underwater target detection, recognition and tracking based on sonar image. Control Decis, 33, 906-922(2018).

    [2] J Petrich, M F Brown, J L Pentzer et al. Side scan sonar based self-localization for small autonomous underwater vehicles. Ocean Eng, 161, 221-226(2018).

    [3] S W Huang, E Chen, J Guo. Efficient seafloor classification and submarine cable route design using an autonomous underwater vehicle. IEEE J Oceanic Eng, 43, 7-18(2018).

    [4] C Park, Y Kim, H Lee et al. Development of a 2 MHz sonar sensor for inspection of bridge substructures. Sensors (Basel), 18, 1222(2018).

    [5] P Chen, X W Cai, D D Zhao et al. Despeckling for side-scan sonar images based on adaptive block-matching and 3D filtering. Opto-Electron Eng, 47, 190580(2020).

    [6] A Abu, R Diamant. A statistically-based method for the detection of underwater objects in sonar imagery. IEEE Sensors J, 19, 6858-6871(2019).

    [7] S Negahdaripour. Application of forward-scan sonar stereo for 3-D scene reconstruction. IEEE J Oceanic Eng, 45, 547-562(2020).

    [8] Z G Shang, C H Zhao, J Wan. Application of multi-resolution analysis in sonar image denoising. J Sys Eng Electron, 19, 1082-1089(2008).

    [9] Y Jin, B Ku, J Ahn et al. Nonhomogeneous noise removal from side-scan sonar images using structural sparsity. IEEE Geosci Remote Sens Lett, 16, 1215-1219(2019).

    [10] Z Wang, S W Zhang, W Z Huang et al. Sonar image target detection based on adaptive global feature enhancement network. IEEE Sensors J, 22, 1509-1530(2022).

    [11] M Mignotte, C Collet, P Pérez et al. Markov random field and fuzzy logic modeling in sonar imagery: application to the classification of underwater floor. Comput Vis Image Underst, 79, 4-24(2000).

    [12] D Köhntopp, B Lehmann, D Kraus et al. Classification and localization of naval mines with superellipse active contours. IEEE J Ocean Eng, 44, 767-782(2019).

    [13] M Valdenegro-Toro. End-to-end object detection and recognition in forward-looking sonar images with convolutional neural networks, 144-150(2016). https://doi.org/10.1109/AUV.2016.7778662

    [14] D P Williams. Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks, 2497-2502(2016). https://doi.org/10.1109/ICPR.2016.7900011

    [15] J Kim, S C Yu. Convolutional neural network-based real-time ROV detection using forward-looking sonar image, 396-400(2016). https://doi.org/10.1109/AUV.2016.7778702

    [16] G X Liu, S Y Liu, J F Wu et al. Machine vision object detection algorithm based on deep learning and application in banknote detection. China Measur Test Technol, 45, 1-9(2019).

    [17] J Harikrishnan, A Sudarsan, A Sadashiv et al. Vision-face recognition attendance monitoring system for surveillance using deep learning technology and computer vision, 1-5(2019). https://doi.org/10.1109/ViTECoN.2019.8899418

    [18] B Q Li, H N Huang, J Y Liu et al. Synthetic aperture sonar underwater multi-scale target efficient detection model based on improved single shot detector. J Electron Inf Technol, 43, 2854-2862(2021).

    [19] L Chen, J L Zhang, H Peng et al. Few-shot image classification via multi-scale attention and domain adaptation. Opto-Electron Eng, 50, 220232(2023).

    [20] X Y Ge, N Y Wei, H K Zhou et al. Research on small underwater target detection technology based on side-scan sonar. Digit Ocean Underwater Warf, 6, 155-161(2023).

    [21] A Bochkovskiy, C Y Wang, H Y M Liao. YOLOv4: optimal speed and accuracy of object detection(2020). https://doi.org/10.48550/arXiv.2004.10934

    [22] A Singh, V Kalaichelvi, R Karthikeyan. Performance analysis of object detection algorithms for robotic welding applications in planar environment. Int J Comput Integr Manuf, 36, 1083-1108(2023).

    [23] X Chen, D L Peng, Y Gu. Real-time object detection for UAV images based on improved YOLOv5s. Opto-Electron Eng, 49, 210372(2022).

    [24] Z Ge, S T Liu, F Wang et al. YOLOX: exceeding YOLO series in 2021(2021). https://doi.org/10.48550/arXiv.2107.08430

    [25] B Y Ying, Y C Xu, S Zhang et al. Weed detection in images of carrot fields based on improved YOLO v4. Traitem Signal, 38, 341-348(2021).

    [26] L Huang, Y Yang, C Y Yang et al. FS-YOLOv5: lightweight infrared rode target detection method. Comput Eng Appl, 59, 215-224(2023).

    [27] H L Li, J Li, H B Wei et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles(2022). https://doi.org/10.48550/arXiv.2206.02424

    [28] Z Q Feng, Z J Xie, Z W Bao et al. Real-time dense small object detection algorithm for UAV based on improved YOLOv5. Acta Aeronaut Astronaut Sin, 44, 327106(2023).

    [29] X K Zhu, S C Lyu, X Wang et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios, 2778-2788(2021). https://doi.org/10.1109/ICCVW54120.2021.00312

    [30] Z Y Niu, G Q Zhong, H Yu. A review on the attention mechanism of deep learning. Neurocomputing, 452, 48-62(2021).

    [31] J Hu, L Shen, G Sun. Squeeze-and-excitation networks, 7132-7141(2018). https://doi.org/10.1109/CVPR.2018.00745

    [32] S Woo, J Park, J Y Lee et al. CBAM: convolutional block attention module, 3-19(2018). https://doi.org/10.1007/978-3-030-01234-2_1

    [33] L X Yang, R Y Zhang, L D Li et al. SimAM: a simple, parameter-free attention module for convolutional neural networks, 11863-11874(2021).

    [34] Z H Zheng, P Wang, W Liu et al. Distance-IoU loss: faster and better learning for bounding box regression, 12993-13000(2020). https://doi.org/10.1609/aaai.v34i07.6999

    [35] M Y Yuan, Y L Song, C Zhang et al. Underwater object detection based on GA-RetinaNet. Comput Syst Appl, 32, 80-90(2023).

    [36] T Y Lin, P Goyal, R Girshick et al. Focal loss for dense object detection, 2999-3007(2017). https://doi.org/10.1109/ICCV.2017.324

    Dongdong Zhao, Dunhan Xie, Peng Chen, Ronghua Liang, Yi Shen, Xinxin Guo. Lightweight YOLOv5 sonar image object detection algorithm and implementation based on ZYNQ[J]. Opto-Electronic Engineering, 2024, 51(1): 230284-1
    Download Citation