• Photonics Research
  • Vol. 7, Issue 7, B41 (2019)
Xiangyu He1、†, Enyuan Xie1、†, Mohamed Sufyan Islim2、†, Ardimas Andi Purwita2, Jonathan J. D. McKendry1, Erdan Gu1、*, Harald Haas2, and Martin D. Dawson1
Author Affiliations
  • 1Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow G1 1RD, UK
  • 2Li-Fi R&D Centre, the University of Edinburgh, Institute for Digital Communications, Edinburgh EH9 3JL, UK
  • show less
    DOI: 10.1364/PRJ.7.000B41 Cite this Article Set citation alerts
    Xiangyu He, Enyuan Xie, Mohamed Sufyan Islim, Ardimas Andi Purwita, Jonathan J. D. McKendry, Erdan Gu, Harald Haas, Martin D. Dawson. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm[J]. Photonics Research, 2019, 7(7): B41 Copy Citation Text show less
    References

    [1] M. S. Islim, S. Videv, M. Safari, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, H. Haas. The impact of solar irradiance on visible light communications. J. Lightwave Technol., 36, 2376-2386(2018).

    [2] Z. Xu, B. M. Sadler. Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag., 46, 67-73(2008).

    [3] K. Kojima, Y. Yoshida, M. Shiraiwa, Y. Awaji, A. Kanno, N. Yamamoto, S. Chichibu. 1.6-Gbps LED-based ultraviolet communication at 280  nm in direct sunlight. European Conference on Optical Communication (ECOC), 1-3(2018).

    [4] S. Karp, R. M. Gagliardi, S. E. Moran, L. B. Stotts. Optical Channels: Fibers, Clouds, Water, and the Atmosphere(2013).

    [5] D. E. Sunstein. A scatter communications link at ultraviolet frequencies(1968).

    [6] T. Feng, F. Xiong, Q. Ye, Z. Pan, Z. Dong, Z. Fang. Non-line-of-sight optical scattering communication based on solar-blind ultraviolet light. Proc. SPIE, 6783, 67833X(2007).

    [7] D. Han, Y. Liu, K. Zhang, P. Luo, M. Zhang. Theoretical and experimental research on diversity reception technology in NLOS UV communication system. Opt. Express, 20, 15833-15842(2012).

    [8] J. J. Puschell, R. Bayse. High data rate ultraviolet communication systems for the tactical battlefield. Proc. IEEE, 1, 253-267(1990).

    [9] M. Geller, T. E. Keenan, D. E. Altman, R. H. Patterson. Optical non-line-of-sight covert, secure high data communication system. U.S. Patent(1985).

    [10] X. Sun, Z. Zhang, A. Chaaban, T. K. Ng, C. Shen, R. Chen, J. Yan, H. Sun, X. Li, J. Wang, J. Li, M.-S. Alouini, B. S. Ooi. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation. Opt. Express, 25, 23267-23274(2017).

    [11] E. Xie, M. Stonehouse, R. Ferreira, J. J. McKendry, J. Herrnsdorf, X. He, S. Rajbhandari, H. Chun, A. V. Jalajakumari, O. Almer, G. Faulkner, I. M. Watson, E. Gu, R. Henderson, D. O’Brien, M. D. Dawson. Design, fabrication, and application of GaN-based micro-LED arrays with individual addressing by N-electrodes. IEEE Photon. J., 9, 7907811(2017).

    [12] S. Rajbhandari, J. J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, M. D. Dawson. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond. Sci. Technol., 32, 023001(2017).

    [13] E. F. Schubert. Light-Emitting Diodes(2006).

    [14] J. J. McKendry, R. P. Green, A. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson. High-speed visible light communications using individual pixels in a micro light-emitting diode array. IEEE Photon. Technol. Lett., 22, 1346-1348(2010).

    [15] R. X. Ferreira, E. Xie, J. J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, M. D. Dawson. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photon. Technol. Lett., 28, 2023-2026(2016).

    [16] A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, D. Feezell. GHz-bandwidth nonpolar InGaN/GaN micro-LED operating at low current density for visible-light communication. IEEE International Semiconductor Laser Conference (ISLC), 1-2(2018).

    [17] A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, D. Feezell. Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5  GHz modulation bandwidth. IEEE Electron Device Lett., 39, 520-523(2018).

    [18] M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, M. D. Dawson. Towards 10  Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photon. Res., 5, A35-A43(2017).

    [19] J. J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. D. Griffiths, S. Watson, E. Gu, A. E. Kelly, H. Haas, M. D. Dawson. Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs. Summer Topicals Meeting Series (SUM), 175-176(2015).

    [20] N. Maeda, M. Jo, H. Hirayama. Improving the efficiency of AlGaN deep-UV LEDs by using highly reflective Ni/Al p-type electrodes. Phys. Status Solidi A, 215, 1700435(2018).

    [21] M. Kneissl. A brief review of III-nitride UV emitter technologies and their applications. III-Nitride Ultraviolet Emitters, 1-25(2016).

    [22] G.-D. Hao, M. Taniguchi, N. Tamari, S.-I. Inoue. Enhanced wall-plug efficiency in AlGaN-based deep-ultraviolet light-emitting diodes with uniform current spreading p-electrode structures. J. Phys. D, 49, 235101(2016).

    [23] . APD 430x operation manual.

    [24] R. P. Green, J. J. McKendry, D. Massoubre, E. Gu, M. D. Dawson, A. E. Kelly. Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes. Appl. Phys. Lett., 102, 091103(2013).

    [25] J. Cho, E. Yoon, Y. Park, W. J. Ha, J. K. Kim. Characteristics of blue and ultraviolet light-emitting diodes with current density and temperature. Electron. Mater. Lett., 6, 51-53(2010).

    [26] M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, M. Wraback. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express, 5, 082101(2012).

    [27] J. G. Proakis. Digital Communications(1995).

    CLP Journals

    [1] Xiaohang Li, Russell D. Dupuis, Tim Wernicke. Semiconductor UV photonics: feature introduction[J]. Photonics Research, 2019, 7(12): SUVP1

    [2] Liang Guo, Yanan Guo, Junxi Wang, Tongbo Wei. Ultraviolet communication technique and its application[J]. Journal of Semiconductors, 2021, 42(8): 081801

    [3] Daniel M. Maclure, Jonathan J. D. McKendry, Mohamed Sufyan Islim, Enyuan Xie, Cheng Chen, Xiaobin Sun, Xudong Liang, Xiaohui Huang, Hanaa Abumarshoud, Johannes Herrnsdorf, Erdan Gu, Harald Haas, Martin D. Dawson. 10 Gbps wavelength division multiplexing using UV-A, UV-B, and UV-C micro-LEDs[J]. Photonics Research, 2022, 10(2): 516

    [4] Lei Wang, Zixian Wei, Chien-Ju Chen, Lai Wang, H. Y. Fu, Li Zhang, Kai-Chia Chen, Meng-Chyi Wu, Yuhan Dong, Zhibiao Hao, Yi Luo. 1.3 GHz E-O bandwidth GaN-based micro-LED for multi-gigabit visible light communication[J]. Photonics Research, 2021, 9(5): 792

    [5] Mengyin Jin, Zeyuan Qian, Xinwei Chen, Xugao Cui, Ke Jiang, Xiaojuan Sun, Dabing Li, Pengfei Tian. Signal transmission of 4 GHz beyond the system bandwidth in UV-C LED communication based on temporal ghost imaging[J]. Chinese Optics Letters, 2021, 19(11): 110602

    Xiangyu He, Enyuan Xie, Mohamed Sufyan Islim, Ardimas Andi Purwita, Jonathan J. D. McKendry, Erdan Gu, Harald Haas, Martin D. Dawson. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm[J]. Photonics Research, 2019, 7(7): B41
    Download Citation