• Journal of Inorganic Materials
  • Vol. 34, Issue 7, 694 (2019)
Dong LI1、2, Chao LEI1、2, Hua LAI3, Xiao-Lin LIU1、2, Wen-Li YAO1、2, Tong-Xiang LIANG1, and Sheng-Wen ZHONG1、2
Author Affiliations
  • 1School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • 2Jiangxi Key Laboratory of Power Battery and Materials, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • 3School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • show less
    DOI: 10.15541/jim20180512 Cite this Article
    Dong LI, Chao LEI, Hua LAI, Xiao-Lin LIU, Wen-Li YAO, Tong-Xiang LIANG, Sheng-Wen ZHONG. Recent Advancements in Interface between Cathode and Garnet Solid Electrolyte for All Solid State Li-ion Batteries[J]. Journal of Inorganic Materials, 2019, 34(7): 694 Copy Citation Text show less
    References

    [1] P QIU Z, J ZHANG Y, B XIA S et al. Research progress on interface properties of inorganic solid state lithium ion batteries. Acta Chim.Sinica, 73, 992-1001(2015).

    [2] X XU X, H LI. A review of solid-state lithium batteries. Energ. Stor. Sci. Technol, 7, 1-7(2018).

    [3] G KIM J, B SON, S MUKHERJEE et al. A review of lithium and non-lithium based solid state batteries. Power Sources, 282, 299-322(2015).

    [4] A MAUGER, M ARMAND, M JULIEN C et al. Challenges and issues facing lithium metal for solid-state rechargeable batteries.. Power Sources, 353, 333-342(2017).

    [5] C SUN, J LIU, Y GONG et al. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 33, 363-386(2017).

    [6] K TAKADA. Progress and prospective of solid-state lithium batteries. Acta Mater, 61, 759-770(2013).

    [7] Y MEESALA, A JENA, H CHANG et al. Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett, 2, 2734-2751(2017).

    [8] K KERMAN, A LUNTZ, V VISWANATHAN et al. Review- practical challenges hindering the development of solid state Li ion batteries.. Electrochem. Soc, 164, A1731-A1744(2017).

    [9] L CHEN, S CHI S, Y DONG et al. Research progress of key materials for all-solid-state lithium batteries.. Chin. Ceram. Soc, 46, 21-34(2018).

    [10] TAKADA KAZUNORI. Progress in solid electrolytes toward realizing solid-state lithium batteries.. Power Sources, 394, 74-85(2018).

    [11] J CHENG, H LI, C WANG. Recent progress in solid-state electrolytes for alkali-ion batteries. Sci. Bull, 62, 1473-1490(2017).

    [12] F ZHENG, M KOTOBUKI, S SONG et al. Review on solid electrolytes for all-solid-state lithium-ion batteries.. Power Sources, 389, 198-213(2018).

    [13] Y ZHU, X HE, Y MO. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces, 7, 23685-23693(2015).

    [14] W ZHONG S, B HUANG. Effects of excess lithium salt on properties of perovskite-type solid electrolyte Li3/8Sr7/16Ta3/4Hf1/4O3. Nonferr. Metal. Sci. Eng, 8, 70-74(2017).

    [15] C XU, B LUO J, W PENG W et al. SPS sintering and properties of NASICON type solid electrolyte Li1.1Y0.1Zr1.9(PO4)3. Nonferr. Metal. Sci. Eng, 9, 66-70(2018).

    [16] B LUO J, T LI T, X YOU W et al. Preparation of Li3/8Sr7/16Ta3/4Hf1/4O3 perovskite solid electrolyte by hot pressing sintering. Nonferr. Metal. Sci. Eng, 9, 66-69(2018).

    [17] C BACHMAN J, S MUY, A GRIMAUD et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev, 116, 140-162(2016).

    [18] J LIN Z, M HE X, J LI J et al. Recent advances of all solid state polymer electrolyte for Li-ion batteries. Prog. Chem, 18, 459-466(2006).

    [19] D RICHARDS W, J MIARA L, Y WANG et al. Interface stability in solid-state batteries. Chem. Mater, 28, 266-273(2016).

    [20] H DUAN, H ZHENG, Y ZHOU et al. Stability of garnet-type Li ion conductors: an overview. Solid State Ionics, 318, 45-53(2018).

    [21] K CHAN C, T YANG, M WELLER J. Nanostructured garnet-type Li7La3Zr2O12: synthesis, properties, and opportunities as electrolytes for Li-ion batteries. Electrochim. Acta, 253, 268-280(2017).

    [22] S RAMAKUMAR, C DEVIANNAPOORANI, L DHIVYA et al. Lithium garnets: synthesis, structure, Li +, conductivity, Li +, dynamics and applications. Prog. Mater. Sci, 88, 325-411(2017).

    [23] Q LIU, Z GENG, C HAN et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries.. Power Sources, 389, 120-134(2018).

    [24] F WU J, K PANG W, K PETERSON V et al. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl. Mater. Interfaces, 9, 12461-12468(2017).

    [25] X HAN, Y GONG, K FU K et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater, 16, 572-579(2017).

    [26] K FU K, Y GONG, B LIU et al. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv, 3, e1601659(2017).

    [27] C WANG, Y GONG, B LIU et al. Conformal, nanoscale ZnO surface modification of garnet-based solid state electrolyte for lithium metal anodes. Nano Lett, 17, 565-571(2016).

    [28] Y TIAN, F DING, H ZHONG et al. Li6.75La3Zr1.75Ta0.25O12 @amorphous Li3OCl composite electrolyte for solid state lithium- metal batteries. Energy Storage Mater, 14, 49-57(2018).

    [29] H GAO Z, B SUN H, L FU et al. Promises, challenges,recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater, 30(2018).

    [30] B ZHENG, H WANG, J MA, Z GONG, Y YANG. A review of inorganic solid electrolyte/electrode interface in all-solid-state lithium batteries. Sci. Sin. Chim, 47, 579-593(2017).

    [31] S YU, D SCHMIDT R, R GARCIA-MENDEZ et al. Elastic properties of the solid electrolyte Li7La3Zr2O12( LLZO). Chem. Mater, 28, 197-206(2016).

    [32] X ZHAN, S LAI, P GOBET M et al. Defect chemistry and electrical properties of garnet-type Li7La3Zr2O12. Phys. Chem. Chem. Phys, 20, 1447-1459(2018).

    [33] T LIU, Y ZHANG, R CHEN et al. Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact. Electrochem. Commun, 79, 1-4(2017).

    [34] H YAMADA, T ITO, R HONGAHALLY BASAPPA et al. Influence of strain on local structure and lithium ionic conduction in garnet-type solid electrolyte.. Power Sources, 368, 97-106(2017).

    [35] G BUCCI, T SWAMY, M CHIANG Y et al. Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design. J. Mater. Chem. A, 5, 19422-19430(2017).

    [36] L CHENG, J CRUMLIN E, W CHEN et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys. Chem. Chem. Phys, 16, 18294-18300(2014).

    [37] L CHENG, H WU C, A JARRY et al. Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl. Mater. Interfaces, 7, 17649-19655(2015).

    [38] A SHARAFI. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A, 5, 13475-13487(2017).

    [39] W AHN C, J CHOI J, J RYU et al. Electrochemical properties of Li7La3Zr2O12-based solid state battery.. Power Sources, 272, 554-558(2014).

    [40] W XIA, B XU, H DUAN et al. Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2.. Am. Ceram. Soc, 100, 2832-2839(2017).

    [41] G KANG S, S SHOLL D. First-principles study of chemical stability of the lithium oxide garnets Li7La3M2O12 (M=Zr, Sn, or Hf). J. Phys. Chem. C, 118, 17402-17406(2014).

    [42] K HOFSTETTER, J SAMSON A, S NARAYANAN et al. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium.. Power Sources, 390, 297-312(2018).

    [43] Y JIN, J MCGINN P. Li7La3Zr2O12, electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery.. Power Sources, 239, 326-331(2013).

    [44] X WANG Y, W LAI. Phase transition in lithium garnet oxide ionic conductors Li7La3Zr2O12: the role of Ta substitution and H2O/CO2 exposure.. Power Sources, 275, 612-620(2015).

    [45] Y TIAN, T SHI, D RICHARDS W et al. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci, 10, 1150-1166(2017).

    [46] H KIM K, Y IRIYAMA, K YAMAMOTO et al. Characterization of the interface between LiCoO2, and Li7La3Zr2O12, in an all-solid-state rechargeable lithium battery.. Power Sources, 196, 764-767(2011).

    [47] S OHTA, J SEKI, Y YAGI et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery.. Power Sources, 265, 40-44(2014).

    [48] Y REN, T LIU, Y SHEN et al. Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12, and major commercial lithium battery cathode materials.. Materiomics, 2, 256-264(2016).

    [49] L MIARA, A WINDMÜLLER, L TSAI C et al. About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as function of temperature. ACS Appl. Mater. Interfaces, 8, 26842-26850(2016).

    [50] J MIARA L, D RICHARDS W, E WANG Y et al. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets. Chem. Mater, 27, 4040-4047(2015).

    [51] C HÄNSEL, S AFYON, L RUPP J. Investigating the all-solid-state batteries based on lithium garnets and a high potential cathode- LiMn1.5Ni0.5O4. Nanoscale, 8, 18412-18420(2016).

    [52] K PARK, C YU B, W JUNG J et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem. Mater, 28, 8051-8059(2016).

    [53] F DU, N ZHAO, Y LI et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes.. Power Sources, 300, 24-28(2015).

    [54] T LIU, Y REN, Y SHEN et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12, electrolyte: interfacial resistance.. Power Sources, 324, 349-357(2016).

    [55] M HE, Z CUI, F HAN et al. Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries.. Alloys Compd, 762, 157-162(2018).

    [56] T LIU, Y ZHANG, X ZHANG et al. Enhanced electrochemical performance of bulk type oxide ceramic lithium battery enabled by interface modification. J. Mater. Chem. A, 6, 4649-4657(2018).

    [57] F YAN X, B LI Z, Y WEN Z et al. Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte. J. Phys. Chem. C, 121, 1431-1435(2017).

    [58] H WAKAYAMA, H YONEKURA, Y KAWAI. Three-dimensional bicontinuous nanocomposite from a self-assembled block copolymer for a high-capacity all-solid-state lithium battery cathode. Chem. Mater, 28, 4453-4459(2016).

    [59] H WAKAYAMA, Y KAWAI. Effect of LiCoO2/Li7La3Zr2O12 ratio on the structure and electrochemical properties of nanocomposite cathodes for all-solid-state lithium batteries. J. Mater. Chem. A, 5, 18816-18822(2017).

    [60] J GAI, E ZHAO, F MA et al. Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site.. Eur. Ceram. Soc, 38, 1673-1678(2017).

    [61] S OHTA, T KOBAYASHI, J SEKI et al. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte.. Power Sources, 202, 332-335(2012).

    [62] M KOTOBUKI, H MUNAKATA, K KANAMURA et al. Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode.. Electrochem. Soc, 157, A1076-A1079(2010).

    [63] B LIU, K FU, Y GONG et al. Rapid thermal annealing of cathode- garnet interface toward high temperature solid state batteries. Nano Lett, 17, 4917-4923(2017).

    [64] S OHTA, S KOMAGATA, J SEKI et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3, solid electrolytes fabricated by screen-printing.. Power Sources, 238, 53-56(2013).

    [65] T KATO, T HAMANAKA, K YAMAMOTO et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid- state battery.. Power Sources, 260, 292-298(2014).

    [66] N OHTA, K TAKADA, L ZHANG et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater, 18, 2226-2229(2006).

    [67] H KITAURA, A HAYASHI, K TADANAGA et al. Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4, positive electrode. Solid State Ionics, 192, 304-307(2011).

    [68] A SAKUDA, H KITAURA, A HAYASHI et al. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O-SiO2 glasses. Electrochem. Solid-State Lett, 11, A1-A3(2008).

    [69] Y JIN, N LI, H CHEN C et al. Electrochemical characterizations of commercial LiCoO2 powders with surface modified by Li3PO4 nanoparticles. Electrochem. Solid-State Lett, 9, A273-A276(2006).

    [70] B LIU, Y GONG, K FU et al. Garnet solid electrolyte protected Li-metal batteries. ACS Appl. Mater. Interfaces, 9, 18809-18815(2017).

    [71] J ZHANG, N ZHAO, M ZHANG et al. Flexible and ion- conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 28, 447-454(2016).

    [72] J CHEN R, B ZHANG Y, T LIU et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all composite approach. ACS Appl. Mater. Interfaces, 9, 9654-9661(2017).

    [73] X ZHANG, T LIU, S ZHANG et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength and thermal stability of solid composite electrolytes. J. Am. Chem. Soc, 139, 13779-13785(2017).

    [74] W ZHANG, J NIE, F LI et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy, 45, 413-419(2018).

    [75] K YOSHIMA, Y HARADA, N TAKAMI. Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12, for 12V-class bipolar batteries.. Power Sources, 302, 283-290(2016).

    [76] J ZHANG, X ZANG, H WEN et al. High-voltage and free- standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A, 5, 4940-4948(2017).

    [77] H HUO, J SUN, C CHEN et al. Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) and garnets for solid-state batteries.. Power Sources, 383, 150-156(2018).

    [78] H HUO, N ZHAO, J SUN et al. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery.. Power Sources, 372, 1-7(2017).

    [79] Z WANG, Z WANG, L YANG et al. Boosting Interfacial Li +, transport with a MOF-based ionic conductor for solid-state batteries. Nano Energy, 49, 580-587(2018).

    [80] B XU, H DUAN, H LIU et al. Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries. ACS Appl. Mater. Interfaces, 9, 21077-21082(2017).

    [81] B JAN V D, S AFYON, L M RUPP J. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li + conductors. Adv. Energy Mater, 6(2016).

    Dong LI, Chao LEI, Hua LAI, Xiao-Lin LIU, Wen-Li YAO, Tong-Xiang LIANG, Sheng-Wen ZHONG. Recent Advancements in Interface between Cathode and Garnet Solid Electrolyte for All Solid State Li-ion Batteries[J]. Journal of Inorganic Materials, 2019, 34(7): 694
    Download Citation