• Laser & Optoelectronics Progress
  • Vol. 57, Issue 1, 010005 (2020)
Huili Lü, Yudong Mao*, Mingzhi Yu, Kaimin Yang, Fang Liu, and Yuancheng Wang
Author Affiliations
  • Department of Thermal Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China
  • show less
    DOI: 10.3788/LOP57.010005 Cite this Article Set citation alerts
    Huili Lü, Yudong Mao, Mingzhi Yu, Kaimin Yang, Fang Liu, Yuancheng Wang. Research Progress on Heat Transfer Theory in Ultra-Fast Laser Heating Technology[J]. Laser & Optoelectronics Progress, 2020, 57(1): 010005 Copy Citation Text show less
    References

    [1] Dai J, Yang L, Zhang Y C et al. Pulsed laser welding of AZ31 magnesium alloy and aluminum matrix composites[J]. Laser & Optoelectronics Progress, 55, 051403(2018).

    [2] Zhou X, Duan J, Chen H et al. Experimental study about water-assisted laser drill on Al2O3 ceramics without recast layer[J]. Laser Technology, 42, 271-275(2018).

    [3] Cheng W, Wu M P, Tang Y H et al. Laser cladding process of 42CrMo surface with single-pass[J]. Laser & Optoelectronics Progress, 56, 041402(2019).

    [4] Ma Y Y, Han S K, Zhai Y et al. An illumination method based on fiber array[J]. Optical Technique, 44, 201-205(2018).

    [5] Li C H, Luan D C, Zhu Q H et al. A universal theoretical model for thermal integration in materials during repetitive pulsed laser-based processing[J]. Optik, 171, 728-736(2018).

    [6] Gao L Y, Zhou J Z, Sun Q et al. Numerical simulation and surface morphology of laser-cleaned aluminum alloy paint layer[J]. Chinese Journal of Lasers, 46, 0502002(2019).

    [7] Li Y L, Wu L Y, Shen H H et al. Patterning of graphene by light field modulated nanosecond laser[J]. High Power Laser and Particle Beams, 30, 129001(2018).

    [8] Yao J H, Wu L J, Li B et al. Research states and development tendency of supersonic laser deposition technology[J]. Chinese Journal of Lasers, 46, 0300001(2019).

    [9] Chen G B, Wang Y D, Zhang J J et al. An analytical solution for two-dimensional modeling of repetitive long pulsed laser heating material[J]. International Journal of Heat and Mass Transfer, 104, 503-509(2017).

    [10] Chen G B, Gu X Y, Bi J. Numerical analysis of thermal effect in aluminum alloy by repetition frequency pulsed laser[J]. Optik, 127, 10115-10121(2016).

    [11] Yu P, Zeng Y. Characterization of laser-induced local heating in a substrate[J]. International Journal of Heat and Mass Transfer, 106, 989-996(2017).

    [12] Tisza L. Transport phenomena in helium II[J]. Nature, 141, 913(1938).

    [13] Landau L. Theory of the superfluidity of helium II[J]. Physical Review, 60, 356-358(1941).

    [14] Peshkov V. Second sound in helium II[J]. Jorunal of Physics, 8, 381-382(1944).

    [15] Jou D, Casas-Vazquez J, Lebon G. Extended irreversible thermodynamics[J]. Reports on Progress in Physics, 51, 1105-1179(1988).

    [16] Cattaneo C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation[J]. Compte Rendus, 247, 431-433(1958).

    [17] Tzou D Y. The generalized lagging response in small-scale and high-rate heating[J]. International Journal of Heat and Mass Transfer, 38, 3231-3240(1995).

    [18] Bai C, Lavine A S. On hyperbolic heat conduction and the second law of thermodynamics[J]. Journal of Heat Transfer, 117, 256-263(1995).

    [19] Coleman B D, Fabrizio M, Owen D R. On the thermodynamics of second sound in dielectric crystals[J]. Archive for Rational Mechanics and Analysis, 80, 135-158(1982).

    [20] Coleman B D, Fabrizio M, Owen D R. Thermodynamics and the constitutive relations for second sound in crystals[M]. ∥Grioli G. Thermodynamics and constitutive equations. Lecture notes in physics. Berlin, Heidelberg: Springer, 228, 20-43(1985).

    [21] Lin C K, Hwang C C, Chuag Y P. The unsteady solutions of a unified heat conduction equation[J]. International Journal of Heat and Mass Transfer, 40, 1716-1719(1997).

    [22] Duhamel P. Application of a new finite integral transform method to the wave model of conduction[J]. International Journal of Heat and Mass Transfer, 47, 573-588(2004).

    [23] Wang L Q. Solution structure of hyperbolic heat-conduction equation[J]. International Journal of Heat and Mass Transfer, 43, 365-373(2000).

    [24] Ordóñez-Miranda J. Alvarado-Gil J J. Thermal wave oscillations and thermal relaxation time determination in a hyperbolic heat transport model[J]. International Journal of Thermal Sciences, 48, 2053-2062(2009).

    [25] Yilbas B S, Pakdemirli M. Analytical solution for temperature field in electron and lattice sub-systems during heating of solid film[J]. Physica B: Condensed Matter, 382, 213-219(2006).

    [26] Anisimov S I, Kapeliovich B L, Perelman T L. Electron emission from metal surfaces under the action of ultrashort laser pulses[J]. Soviet Physics JETP, 39, 375-377(1974).

    [27] Fujimoto J G, Liu J M, Ippen E P et al. Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures[J]. Physical Review Letters, 53, 1837-1840(1984).

    [28] Brorson S D, Fujimoto J G, Ippen E P. Femtosecond electronic heat-transport dynamics in thin gold films[J]. Physical Review Letters, 59, 1962-1965(1987).

    [29] Qiu T Q, Tien C L. Short-pulse laser heating on metals[J]. International Journal of Heat and Mass Transfer, 35, 719-726(1992).

    [30] Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals[J]. Journal of Heat Transfer, 115, 835-841(1993).

    [31] Özişik M N, Tzou D Y. On the wave theory in heat conduction[J]. Journal of Heat Transfer, 116, 526-535(1994).

    [32] Al-Nimr M A, Kiwan S. Effect of thermal losses on the microscopic two-step heat conduction model[J]. International Journal of Heat and Mass Transfer, 44, 1013-1018(2001).

    [33] Song Y Q, Wang Q J, Zhang Y C. Thermal behavior of thin metal film in the hyperbolic two-step model[J]. Micronanoelectronic Technology, 40, 15-18, 29(2003).

    [34] Song Y Q, Wang Q J, Zhang Y C. Effect of convective thermal losses on the hyperbolic two-step heat conduction[J]. Micronanoelectronic Technology, 40, 17-22(2003).

    [35] Wang Q J, Xu H Y, Song Y Q et al. Theory of microscale heat transfer and short-pulse laser heating of thin metal films[J]. Micronanoelectronic Technology, 40, 18-23(2003).

    [36] Xu H Y, Zhang Y C, Song Y Q et al. Research progress in pulse laser heating thin film microscale heat transfer[J]. Progress in Physics, 24, 152-162(2004).

    [37] Dai W Z, Han F, Sun Z Z. Accurate numerical method for solving dual-phase-lagging equation with temperature jump boundary condition in nano heat conduction[J]. International Journal of Heat and Mass Transfer, 64, 966-975(2013).

    [38] Mukherjee A, Lahiri A, Mishra S C. Analyses of dual-phase lag heat conduction in 1-D cylindrical and spherical geometry-an application of the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 96, 627-642(2016).

    [39] Mao Y D. Theory analysis and lattice Boltzmann numerical simulation of micro-/nano-scale heat transfer[D]. Jinan: Shandong University(2015).

    [40] Zhang M K, Cao B Y, Guo Y C. Numerical studies on damping of thermal waves[J]. International Journal of Thermal Science, 84, 9-20(2014).

    [41] Tang D W, Araki N. Non-Fourier heat condution behavior in finite mediums under pulse surface heating[J]. Materials Science and Engineering: A, 292, 173-178(2000).

    [42] Larson B C, Tischler J Z, Mills D M. Nanosecond resolution time-resolved X-ray study of silicon during pulsed-laser irradiation[J]. Journal of Materials Research, 1, 144-154(1986).

    [43] Alvarez F X, Jou D. Size and frequency dependence of effective thermal conductivity in nanosystems[J]. Journal of Applied Physics, 103, 094321(2008).

    [44] Jou D, Cimmelli V A, Sellitto A. Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers[J]. Physics Letters A, 373, 4386-4392(2009).

    [45] Xu M T. Thermodynamic basis of dual-phase-lagging heat conduction[J]. Journal of Heat Transfer, 133, 041401(2011).

    [46] Klitsner T. VanCleve J E, Fischer H E, et al. Phonon radiative heat transfer and surface scattering[J]. Physical Review B, 38, 7576-7594(1988).

    [47] Escobar R A, Ghai S S, Jhon M S et al. Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling[J]. International Journal of Heat and Mass Transfer, 49, 97-107(2006).

    [48] Hua Y C, Cao B Y, Guo Z Y. Ballistic-diffusive heat conduction by thermo mass theory[J]. Chinese Science Bulletin, 60, 2344-2348(2015).

    [49] Zhang K, Li L, Ren S T et al. Simulation of lattice Boltzmann method for nano-film laser irradiation process[J]. Acta Optica Sinica, 36, 1014001(2016).

    [50] Mao Y D, Xu M T. Lattice Boltzmann numerical analysis of heat transfer in nano-scale silicon films induced by ultra-fast laser heating[J]. International Journal of Thermal Sciences, 89, 210-221(2015).

    [51] Alvarez F X, Jou D. Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes[J]. Applied Physics Letters, 90, 083109(2007).

    [52] Amon C H, Ghai S S, Kim W T et al. Modeling of nanoscale transport phenomena: application to information technology[J]. Physica A: Statistical Mechanics and its Applications, 362, 36-41(2006).

    [53] Liu W, Asheghi M. Phonon-boundary scattering in ultrathin single-crystal silicon layers[J]. Applied Physics Letters, 84, 3819-3821(2004).

    [54] Zhang H, Lü Z C, Tian L L et al. Thermal conductivity measurements of ultra-thin single crystal silicon films using improved structure. [C]∥2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, October 23-26, 2006, Shanghai, China. New York: IEEE, 9408808(2006).

    [55] Peterson R B. Direct simulation of phonon-mediated heat transfer in a Debye crystal[J]. Journal of Heat Transfer, 116, 815-822(1994).

    [56] Zhong J B, Li L. Scattering effect of particles irradiated by ultrashort laser[J]. High Power Laser and Particle Beams, 27, 089004(2015).

    [57] Hua Y C, Cao B Y. Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations[J]. International Journal of Heat and Mass Transfer, 78, 755-759(2014).

    [58] Hua Y C, Cao B Y. Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations[J]. Applied Thermal Engineering, 111, 1401-1408(2017).

    [59] Hua Y C, Cao B Y. An efficient two-step Monte Carlo method for heat conduction in nanostructures[J]. Journal of Computational Physics, 342, 253-266(2017).

    [60] Li H L, Hua Y C, Cao B Y. A hybrid phonon Monte Carlo-diffusion method for ballistic-diffusive heat conduction in nano- and micro- structures[J]. International Journal of Heat and Mass Transfer, 127, 1014-1022(2018).

    [61] Maruyama S. Molecular dynamics method for microscale heat transfer[J]. Advances in Numerical Heat Transfer, 2, 189-226(2000).

    [62] Elliott J A. Novel approaches to multiscale modelling in materials science[J]. International Materials Reviews, 56, 207-225(2011).

    [63] Wang L M, Zeng X W. Molecular dynamics simulations of femtosecond laser ablation of silicon. [C]∥Proceedings of 2011 International Conference on Electronics and Optoelectronics, July 29-31, 2011, Dalian, Liaoning, China. New York: IEEE, 415-418(2011).

    [64] Li B, Wong C H. Molecular dynamics studies of lubricant depletion under moving laser heating: effects of laser power and film thickness[J]. Tribology International, 92, 38-46(2015).

    [65] Seo Y W, Rosenkranz A, Talke F E. Molecular dynamics study of lubricant depletion by pulsed laser heating[J]. Applied Surface Science, 440, 73-83(2018).

    [66] Wu H, Zhang N, He M et al. Calculation of argon-aluminum interatomic potential and its application in molecular dynamics simulation of femtosecond laser ablation[J]. Chinese Journal of Lasers, 43, 0802004(2016).

    [67] Chen Y Z, Zhou L C, He W F et al. Molecular dynamics simulation of plastic deformation of pure titanium under shock loading[J]. Chinese Journal of Lasers, 43, 0802014(2016).

    [68] Wang Z L, Luo K Y, Liu Y et al. Molecular dynamics simulation of plastic deformation of polycrystalline Cu under mechanical effect with ultrahigh strain rate[J]. Chinese Journal of Lasers, 42, 0703005(2015).

    [69] Xu G F, Zhou J Z, Meng X K et al. Propagation and dislocation development properties of laser shock waves in monocrystalline titanium under cryogenic environment[J]. Chinese Journal of Lasers, 44, 0602005(2017).

    [70] Guan Y, Li L, Niu Z W. Molecular dynamics simulation of solid-liquid phase change considering non-Fourier effect[J]. Journal of Atomic and Molecular Physics, 36, 312-318(2019).

    Huili Lü, Yudong Mao, Mingzhi Yu, Kaimin Yang, Fang Liu, Yuancheng Wang. Research Progress on Heat Transfer Theory in Ultra-Fast Laser Heating Technology[J]. Laser & Optoelectronics Progress, 2020, 57(1): 010005
    Download Citation