• Chinese Physics B
  • Vol. 29, Issue 9, (2020)
Dong-Xi Li1、† and Ni Zhang2
Author Affiliations
  • 1College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China
  • 2College of Mathematics, Taiyuan University of Technology, Taiyuan 03004, China
  • show less
    DOI: 10.1088/1674-1056/ab8c3f Cite this Article
    Dong-Xi Li, Ni Zhang. Dynamical analysis for hybrid virus infection system in switching environment[J]. Chinese Physics B, 2020, 29(9): Copy Citation Text show less

    Abstract

    We investigate the dynamical behavior of hybrid virus infection systems with nonlytic immune response in switching environment, which is modeled as a stochastic process of telegraph noise and represented as a multi-state Markov chains. Firstly, The existence of unique positive solution and boundedness of the new hybrid system is proved. Furthermore, the sufficient conditions for extinction and persistence of virus are established. Finally, stochastic simulations are performed to test and demonstrate the conclusions. As a consequence, our work suggests that stochastic switching environment plays a crucial role in the process of virus prevention and treatment.
    $$ \begin{eqnarray}\left\{\begin{array}{l}\dot{x}(t)=\lambda -\delta x(t)-\displaystyle \frac{\beta x(t)y(t)}{1+qz(t)},\\ \dot{y}(t)=\displaystyle \frac{\beta x(t)y(t)}{1+qz(t)}-ay(t)-py(t)z(t),\\ \dot{z}(t)=cy(t)-bz(t).\end{array}\right.\end{eqnarray}$$(1)

    View in Article

    $$ \begin{eqnarray}\begin{array}{ll} & {\mathbb{P}}\{r(t+\Delta t)=j| r(t)=i\}\\ = & \left\{\begin{array}{ll}{\nu }_{ij}\Delta t+o(\Delta t), & {\rm{if}}\,\,i\ne j,\\ 1+{\nu }_{ii}\Delta t+o(\Delta t), & {\rm{if}}\,\,i=j,\end{array}\right.\end{array}\end{eqnarray}$$(2)

    View in Article

    $$ \begin{eqnarray*}{\pi }_{1}=\displaystyle \frac{{\nu }_{21}}{{\nu }_{12}+{\nu }_{21}}\,\,{\rm{and}}\,\,{\pi }_{2}=\displaystyle \frac{{\nu }_{12}}{{\nu }_{12}+{\nu }_{21}}.\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\hat{\nu }=\mathop{\max }\limits_{k\in {\mathbb{S}}}\nu (k),\,\,\,\,\check{\nu }=\mathop{\min }\limits_{k\in {\mathbb{S}}}\nu (k).\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray}\left\{\begin{array}{l}\dot{x}(t)={\lambda }_{r(t)}-{\delta }_{r(t)}x(t)-\displaystyle \frac{{\beta }_{r(t)}x(t)y(t)}{1+{q}_{r(t)}z(t)},\\ \dot{y}(t)=\displaystyle \frac{{\beta }_{r(t)}x(t)y(t)}{1+{q}_{r(t)}z(t)}-{a}_{r(t)}y(t)-{p}_{r(t)}y(t)z(t),\\ \dot{z}(t)={c}_{r(t)}y(t)-{b}_{r(t)}z(t),\end{array}\right.\end{eqnarray}$$(3)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}\dot{x}(t) & = & {\lambda }_{r(t)}-{\delta }_{r(t)}x(t)-\displaystyle \frac{{\beta }_{r(t)}x(t)y(t)}{1+{q}_{r(t)}z(t)}\\ & \lt & \hat{\lambda }-\check{\delta }x(t).\end{array}\end{eqnarray}$$(4)

    View in Article

    $$ \begin{eqnarray*}x(t)\lt \displaystyle \frac{\hat{\lambda }}{\check{\delta }}+1,\,\,\,\,{\rm{for}}\,\,{\rm{all}}\,\,{\rm{large}}\,\,t,{\rm{say}}\,\,t\gt {t}_{0}.\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\begin{array}{lll}\dot{x}(t)+\dot{y}(t) & = & {\lambda }_{r(t)}-{\delta }_{r(t)}x(t)-{a}_{r(t)}y(t)-{p}_{r(t)}y(t)z(t)\\ & \lt & \hat{\lambda }-\check{\delta }x(t).\end{array}\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}x(t)+y(t)\ge C+\displaystyle \frac{\hat{\lambda }}{\check{\delta }}+1,t\gt {t}_{0},\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\begin{array}{cc}x(t)+y(t)\lt C+\displaystyle \frac{\hat{\lambda }}{\check{\delta }}+1, & {\rm{for\,\,all}}\,\,t\gt {t}_{1}.\end{array}\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\begin{array}{cc}\dot{z}(t)\lt \hat{c}\left(C+\displaystyle \frac{\hat{\lambda }}{\check{\delta }}+1\right)-\check{b}z, & {\rm{for}}\,\,{\rm{large}}\,\,t\end{array}\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}{E}_{1} & = & \{\bar{x},\bar{y},\bar{z}\}=\left\{\displaystyle \frac{c\lambda (1+q\bar{z})}{c\delta +(b\beta +c\delta q)\bar{z}},\displaystyle \frac{b\bar{z}}{c},-\displaystyle \frac{pc\delta +ab\beta +ac\delta q}{2(bp\beta +c\delta pq)}+\displaystyle \frac{\sqrt{{(pc\delta +ab\beta +ac\delta q)}^{2}-4p(b\beta +c\delta q)(ac\delta -c\lambda \beta )}}{2(bp\beta +c\delta pq)}\right\},\end{array}\end{eqnarray}$$(5)

    View in Article

    $$ \begin{eqnarray*}{\alpha }_{r(t)}={\beta }_{r(t)}{\lambda }_{r(t)}-{\delta }_{r(t)}{a}_{r(t)}.\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}{R}_{0}^{* }=\displaystyle \frac{({\pi }_{1}{\beta }_{1}+{\pi }_{2}{\beta }_{2})({\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2})}{({\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2})({\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2})}\lt 1,\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray}\mathop{\mathrm{lim}\inf }\limits_{t\to \infty }x(t)\le \displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}\,\,{\rm{a}}.{\rm{s}}.\end{eqnarray}$$(6)

    View in Article

    $$ \begin{eqnarray}\mathop{\mathrm{lim}\sup }\limits_{t\to \infty }x(t)\ge \displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}\,{\rm{a}}.{\rm{s}}.\end{eqnarray}$$(7)

    View in Article

    $$ \begin{eqnarray}\mathop{\mathrm{lim}}\limits_{t\to \infty }y(t)=0\,{\rm{a}}.{\rm{s}}.\end{eqnarray}$$(8)

    View in Article

    $$ \begin{eqnarray}\mathop{\mathrm{lim}}\limits_{t\to \infty }z(t)=0\,{\rm{a}}.{\rm{s}}.\end{eqnarray}$$(9)

    View in Article

    $$ \begin{eqnarray}{\varOmega }_{1}=\left\{\omega \in \varOmega :\mathop{\mathrm{lim}\inf }\limits_{t\to \infty }x(t)\gt \displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}+\varepsilon \right\}.\end{eqnarray}$$(10)

    View in Article

    $$ \begin{eqnarray}\begin{array}{ll} & \mathop{\mathrm{lim}}\limits_{t\to \infty }\displaystyle \frac{1}{t}\left({\lambda }_{r(s)}-{\delta }_{r(s)}\left[\displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}+\varepsilon \right]\right){\rm{d}}s\\ = & {\pi }_{1}\left({\lambda }_{1}-{\delta }_{1}\left[\displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}+\varepsilon \right]\right)\\ & +{\pi }_{2}\left({\lambda }_{2}-{\delta }_{2}\left[\displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}+\varepsilon \right]\right)\\ = & -({\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2})\varepsilon .\end{array}\\ \end{eqnarray}$$(11)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}dx(t) & = & \left[{\lambda }_{r(t)}-{\delta }_{r(t)}x(t)+\displaystyle \frac{{\beta }_{r(t)}x(t)y(t)}{{q}_{r(t)}z(t)+1}\right]{\rm{d}}t\\ & \le & ({\lambda }_{r(t)}-{\delta }_{r(t)}x(t)){\rm{d}}t.\end{array}\end{eqnarray}$$(12)

    View in Article

    $$ \begin{eqnarray*}\begin{array}{lll}x(t) & \le & x(0)+\displaystyle {\int }_{0}^{T}({\lambda }_{r(s)}-{\delta }_{r(s)}x(s)){\rm{d}}s\\ & & +\displaystyle {\int }_{T}^{t}\left({\lambda }_{r(s)}-{\delta }_{r(s)}\left[\displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}+\varepsilon \right]\right){\rm{d}}s\end{array}\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\mathop{\mathrm{lim}\sup }\limits_{t\to \infty }\displaystyle \frac{x(t)}{t}\le -({\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2})\varepsilon,\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\mathop{\mathrm{lim}}\limits_{t\to \infty }x(t)=0.\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\begin{array}{lll}\displaystyle \frac{x(t)-x(0)}{t} & = & \displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}({\lambda }_{r(s)}-{\delta }_{r(s)}x(s)-\displaystyle \frac{{\beta }_{r(s)}x(s)y(s)}{{q}_{r(s)}z(s)+1}){\rm{d}}s\\ & \le & \displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}({\lambda }_{r(s)}-{\delta }_{r(s)}x(s)){\rm{d}}s.\end{array}\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray}\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}{\delta }_{r(s)}x(s){\rm{d}}s\le \displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}{\lambda }_{r(s)}{\rm{d}}s-\displaystyle \frac{x(t)-x(0)}{t}.\end{eqnarray}$$(13)

    View in Article

    $$ \begin{eqnarray*}({\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2})\mathop{\mathrm{lim}}\limits_{t\to \infty }\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}x(s){\rm{d}}s\le {\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}.\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\mathop{\mathrm{lim}}\limits_{t\to \infty }\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}x(s){\rm{d}}s\le \displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}+\varepsilon .\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}{\rm{d}}\,\mathrm{ln}\,y(t)=\left[\displaystyle \frac{{\beta }_{r(t)}x(t)}{{q}_{r(t)}z(t)+1}-{a}_{r(t)}-{p}_{r(t)}z(t)\right]\,{\rm{d}}t.\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray}\begin{array}{ll} & \displaystyle \frac{\mathrm{ln}y(t)-\mathrm{ln}y(0)}{t}\\ = & \displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}\left(-{a}_{r(s)}+\displaystyle \frac{{\beta }_{r(s)}x(s)}{{q}_{r(s)}z(s)+1}-{p}_{r(s)}z(s)\right){\rm{d}}s\\ & \le \displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}({\beta }_{r(s)}x(s)-{a}_{r(s)})\,{\rm{d}}s.\end{array}\\ \end{eqnarray}$$(14)

    View in Article

    $$ \begin{eqnarray*}\begin{array}{ll} & \mathop{\mathrm{lim}\sup }\limits_{t\to \infty }\displaystyle \frac{1}{t}\mathrm{ln}(y(t))\\ \le & [{\pi }_{1}{\beta }_{1}+{\pi }_{2}{\beta }_{2}]\displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}-({\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2}).\end{array}\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}({\pi }_{1}{\beta }_{1}+{\pi }_{2}{\beta }_{2})({\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2})\lt ({\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2})({\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}),\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\mathop{\mathrm{lim}}\limits_{t\to \infty }y(t)=0.\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray}{\varOmega }_{3}=\left\{\omega \in \varOmega :\mathop{\mathrm{lim}\sup }\limits_{t\to \infty }x(t)\lt \displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}-\varepsilon \right\}.\end{eqnarray}$$(15)

    View in Article

    $$ \begin{eqnarray*}\begin{array}{ll} & \mathop{\mathrm{lim}}\limits_{t\to \infty }\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}\left({\lambda }_{r(s)}-{\delta }_{r(s)}\left[\displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}-\varepsilon \right]\right)\,{\rm{d}}s\\ = & {\pi }_{1}\left({\lambda }_{1}-{\delta }_{1}\left[\displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}-\varepsilon \right]\right)\\ & +{\pi }_{2}\left({\lambda }_{2}-{\delta }_{2}\left[\displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}-\varepsilon \right]\right)\\ = & ({\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2})\varepsilon .\end{array}\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\begin{array}{lll}x(t)-x(0) & = & \displaystyle {\int }_{0}^{t}({\lambda }_{r(s)}-{\delta }_{r(s)}x(s)){\rm{d}}s-\displaystyle {\int }_{0}^{t}\displaystyle \frac{{\beta }_{r(s)}x(s)y(s)}{{q}_{r(s)}z(s)+1}{\rm{d}}s\\ & \ge & \displaystyle {\int }_{0}^{T}({\lambda }_{r(s)}-{\delta }_{r(s)}x(s)){\rm{d}}s\\ & & +\displaystyle {\int }_{T}^{t}\left({\lambda }_{r(s)}-{\delta }_{r(s)}\left[\displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}\right]\right){\rm{d}}s\\ & & -\displaystyle {\int }_{0}^{t}\displaystyle \frac{{\beta }_{r(s)}x(s)y(s)}{{q}_{r(s)}z(s)+1}{\rm{d}}s\end{array}\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\mathop{\mathrm{lim}\sup }\limits_{t\to \infty }\displaystyle \frac{x(t)}{t}\ge ({\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2})\varepsilon,\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\mathop{\mathrm{lim}}\limits_{t\to \infty }x(t)=\infty .\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}{R}_{0}^{* }=\displaystyle \frac{({\pi }_{1}{\beta }_{1}+{\pi }_{2}{\beta }_{2})({\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2})}{({\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2})({\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2})}\gt 1,\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}\displaystyle \frac{y(t)-y(0)}{t} & = & \displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}\left[\displaystyle \frac{{\beta }_{r(s)}x(s)}{{q}_{r(s)}z(s)+1}\right.\\ & & \left. -{a}_{r(s)}y(s)-{p}_{r(s)}y(s)z(s)\right]{\rm{d}}s.\end{array}\end{eqnarray}$$(16)

    View in Article

    $$ \begin{eqnarray}\begin{array}{ll} & \displaystyle \frac{x(t)-x(0)}{t}+\displaystyle \frac{y(t)-y(0)}{t}\\ = & \displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}({\lambda }_{r(s)}-{\delta }_{r(s)}x(s)-{a}_{r(s)}y(s)-{p}_{r(s)}y(s)z(s)){\rm{d}}s.\end{array}\end{eqnarray}$$(17)

    View in Article

    $$ \begin{eqnarray*}\begin{array}{ll} & \displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}{\lambda }_{r(s)}{\rm{d}}s\\ = & \displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}({\delta }_{r(s)}x(s)){\rm{d}}s-\displaystyle \frac{x(t)-x(0)}{t}-\displaystyle \frac{y(t)-y(0)}{t}\\ & -\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}({a}_{r(s)}y(s)){\rm{d}}s-\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}({p}_{r(s)}y(s)z(s)){\rm{d}}s.\end{array}\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray}\begin{array}{ll} & \mathop{\mathrm{lim}}\limits_{t\to \infty }\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}x(s){\rm{d}}s\\ = & \displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}-\displaystyle \frac{{\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}\mathop{\mathrm{lim}}\limits_{t\to \infty }\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}y(s){\rm{d}}s\\ & -\displaystyle \frac{1}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}\mathop{\mathrm{lim}}\limits_{t\to \infty }\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}({p}_{r(s)}y(s)z(s)){\rm{d}}s\\ \le & \displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}-\displaystyle \frac{{\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}\mathop{\mathrm{lim}}\limits_{t\to \infty }\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}y(s){\rm{d}}s.\end{array}\end{eqnarray}$$(18)

    View in Article

    $$ \begin{eqnarray*}\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}({\beta }_{r(s)}x(s)){\rm{d}}s\ge \displaystyle \frac{lny(t)-lny(0)}{t}+\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}{a}_{r(s)}{\rm{d}}s.\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray}\begin{array}{ll} & \displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}x(s){\rm{d}}s\\ \ge & \begin{array}{c}\displaystyle \frac{1}{{\pi }_{1}{\beta }_{1}+{\pi }_{2}{\beta }_{2}}\displaystyle \frac{\mathrm{ln}y(t)-\mathrm{ln}y(0)}{t}+\displaystyle \frac{{\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2}}{{\pi }_{1}{\beta }_{1}+{\pi }_{2}{\beta }_{2}}.\\ \end{array}\end{array}\end{eqnarray}$$(19)

    View in Article

    $$ \begin{eqnarray}\begin{array}{ll} & \begin{array}{c}\displaystyle \frac{{\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2}}{{\pi }_{1}{\beta }_{1}+{\pi }_{2}{\beta }_{2}}\\ \end{array}\\ \le & \displaystyle \frac{{\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}-\displaystyle \frac{{\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2}}{{\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}}\mathop{\mathrm{lim}}\limits_{t\to \infty }\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}y(s){\rm{d}}s.\end{array}\end{eqnarray}$$(20)

    View in Article

    $$ \begin{eqnarray*}\mathop{\mathrm{lim}\inf }\limits_{t\to \infty }\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}y(s){\rm{d}}s\le \left(\displaystyle \frac{({\pi }_{1}{\beta }_{1}+{\pi }_{2}{\beta }_{2})({\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2})-({\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2})({\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2})}{({\pi }_{1}{\beta }_{1}+{\pi }_{2}{\beta }_{2})({\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2})}\right)\left(\displaystyle \frac{{\pi }_{1}{\beta }_{1}+{\pi }_{2}{\beta }_{2}}{{\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2}}\right).\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}({\pi }_{1}{\beta }_{1}+{\pi }_{2}{\beta }_{2})({\pi }_{1}{\lambda }_{1}+{\pi }_{2}{\lambda }_{2})\gt ({\pi }_{1}{a}_{1}+{\pi }_{2}{a}_{2})({\pi }_{1}{\delta }_{1}+{\pi }_{2}{\delta }_{2}),\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\mathop{\mathrm{lim}\inf }\limits_{t\to \infty }\displaystyle \frac{1}{t}\displaystyle {\int }_{0}^{t}y(s){\rm{d}}s\gt 0\,{\rm{a}}.{\rm{s}}.\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\begin{array}{l}{x}_{k+1}={x}_{k}+({\lambda }_{r(t)}-{\delta }_{r(t)}x(t)-\displaystyle \frac{{\beta }_{r(t)}x(t)y(t)}{1+{q}_{r(t)}z(t)})\Delta t,\\ {y}_{k+1}={y}_{k}+(\displaystyle \frac{{\beta }_{r(t)}x(t)y(t)}{1+{q}_{r(t)}z(t)}-{a}_{r(t)}y(t)-{p}_{r(t)}y(t)z(t))\Delta t,\\ {z}_{k+1}={z}_{k}+({c}_{r(t)}y(t)-{b}_{r(t)}z(t))\Delta t.\end{array}\end{eqnarray*}$$()

    View in Article

    $$ \begin{eqnarray*}\begin{array}{lll}{E}^{* } & = & \{{x}^{* },{y}^{* },{z}^{* }\}=\left\{\displaystyle \frac{{\pi }_{1}{c}_{1}{\lambda }_{1}(1+{q}_{1}{\bar{z}}_{1})+{\pi }_{2}{c}_{2}{\lambda }_{2}(1+{q}_{2}{\bar{z}}_{2})}{{\pi }_{1}{c}_{1}{\delta }_{1}+({b}_{1}{\beta }_{1}+{c}_{1}{\delta }_{1}{q}_{1}){\bar{z}}_{1}+{\pi }_{2}{c}_{2}{\delta }_{2}+({b}_{2}{\beta }_{2}+{c}_{2}{\delta }_{2}{q}_{2}){\bar{z}}_{2}},\displaystyle \frac{{\pi }_{1}{b}_{1}{\bar{z}}_{1}+{\pi }_{2}{b}_{2}{\bar{z}}_{2}}{{\pi }_{1}{c}_{1}+{\pi }_{2}{c}_{2}},\right.\\ & & \left. \displaystyle \frac{{\pi }_{1}(-({p}_{1}{c}_{1}{\delta }_{1}+{a}_{1}{b}_{1}{\beta }_{1}+{a}_{1}{c}_{1}{\delta }_{1}{q}_{1}))}{2{\pi }_{1}({b}_{1}{p}_{1}{\beta }_{1}+{c}_{1}{\delta }_{1}{p}_{1}{q}_{1})+2{\pi }_{2}({b}_{2}{p}_{2}{\beta }_{2}+{c}_{2}{\delta }_{2}{p}_{2}{q}_{2})}\right.\\ & & \left. +\displaystyle \frac{{\pi }_{1}(\sqrt{({p}_{1}{c}_{1}{\delta }_{1}+{a}_{1}{b}_{1}{\beta }_{1}+{a}_{1}{c}_{1}{\delta }_{1}{q}_{)}{}^{2}-4{p}_{1}({b}_{1}{\beta }_{1}+{c}_{1}{\delta }_{1}{q}_{1})({a}_{1}{c}_{1}{\delta }_{1}-{c}_{1}{\lambda }_{1}{\beta }_{1})})}{2{\pi }_{1}({b}_{1}{p}_{1}{\beta }_{1}+{c}_{1}{\delta }_{1}{p}_{1}{q}_{1})+2{\pi }_{2}({b}_{2}{p}_{2}{\beta }_{2}+{c}_{2}{\delta }_{2}{p}_{2}{q}_{2})}\right.\\ & & \left. +\displaystyle \frac{{\pi }_{2}(-({p}_{2}{c}_{2}{\delta }_{2}+{a}_{2}{b}_{2}{\beta }_{2}+{a}_{2}{c}_{2}{\delta }_{2}{q}_{2}))}{2{\pi }_{1}({b}_{1}{p}_{1}{\beta }_{1}+{c}_{1}{\delta }_{1}{p}_{1}{q}_{1})+2{\pi }_{2}({b}_{2}{p}_{2}{\beta }_{2}+{c}_{2}{\delta }_{2}{p}_{2}{q}_{2})}\right.\\ & & \left. +\displaystyle \frac{{\pi }_{2}(\sqrt{({p}_{2}{c}_{2}{\delta }_{2}+{a}_{2}{b}_{2}{\beta }_{2}+{a}_{2}{c}_{2}{\delta }_{2}{q}_{)}{}^{2}-4{p}_{2}({b}_{2}{\beta }_{2}+{c}_{2}{\delta }_{2}{q}_{2})({a}_{2}{c}_{2}{\delta }_{2}-{c}_{2}{\lambda }_{2}{\beta }_{2})})}{2{\pi }_{1}({b}_{1}{p}_{1}{\beta }_{1}+{c}_{1}{\delta }_{1}{p}_{1}{q}_{1})+2{\pi }_{2}({b}_{2}{p}_{2}{\beta }_{2}+{c}_{2}{\delta }_{2}{p}_{2}{q}_{2})}\right\}.\end{array}\end{eqnarray*}$$()

    View in Article

    Dong-Xi Li, Ni Zhang. Dynamical analysis for hybrid virus infection system in switching environment[J]. Chinese Physics B, 2020, 29(9):
    Download Citation