[1] Georgescu I M, Ashhab S, Nori F. Quantum simulation[J]. Reviews of Modern Physics, 86, 153-185(2014).
[2] Das A, Chakrabarti B K. Colloquium: Quantum annealing and analog quantum computation[J]. Reviews of Modern Physics, 80, 1061-1081(2008).
[3] Nielsen M A, Chuang I L[M]. Quantum computation and quantum information(2010).
[4] Galindo A, Martín-Delgado M A. Information and computation: classical and quantum aspects[J]. Reviews of Modern Physics, 74, 347-423(2002).
[5] Daniel A L, Brun T A[M]. Quantum error correction(2013).
[6] Calderbank A R, Shor P W. Good quantum error-correcting codes exist[J]. Physical Review A, 54, 1098-1105(1996).
[7] Laflamme R, Miquel C, Paz J P et al. Perfect quantum error correcting code[J]. Physical Review Letters, 77, 198-201(1996).
[8] Steane A. Multiple-particle interference and quantum error correction[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 452, 2551-2577(1996).
[9] Lidar D A, Brun T A[M]. Quantum error correction(2013).
[10] Cai Z Y, Babbush R, Benjamin S C et al. Quantum error mitigation[J]. Reviews of Modern Physics, 95, 045005(2023).
[11] Huang H L, Xu X Y, Guo C et al. Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation[J]. Science China Physics, 66, 250302(2023).
[12] Qin D Y, Xu X S, Li Y. An overview of quantum error mitigation formulas[J]. Chinese Physics B, 31, 090306(2022).
[13] Reichardt B W. Quantum universality from magic states distillation applied to CSS codes[J]. Quantum Information Processing, 4, 251-264(2005).
[14] Jones C. Multilevel distillation of magic states for quantum computing[J]. Physical Review A, 87, 042305(2013).
[15] Briegel H J, Browne D E, Dür W et al. Measurement-based quantum computation[J]. Nature Physics, 5, 19-26(2009).
[16] Raussendorf R, Briegel H J. A one-way quantum computer[J]. Physical Review Letters, 86, 5188-5191(2001).
[17] Raussendorf R, Browne D E, Briegel H J. Measurement-based quantum computation on cluster states[J]. Physical Review A, 68, 022312(2003).
[18] Raussendorf R, Harrington J, Goyal K. A fault-tolerant one-way quantum computer[J]. Annals of Physics, 321, 2242-2270(2006).
[19] Raussendorf R, Harrington J. Fault-tolerant quantum computation with high threshold in two dimensions[J]. Physical Review Letters, 98, 190504(2007).
[20] Raussendorf R, Harrington J, Goyal K. Topological fault-tolerance in cluster state quantum computation[J]. New Journal of Physics, 9, 199(2007).
[21] Fowler A G, Goyal K. Topological cluster state quantum computing[EB/OL]. https://arxiv.org/abs/0805.3202v2
[22] Bartolucci S, Birchall P, Bombín H et al. Fusion-based quantum computation[J]. Nature Communications, 14, 912(2023).
[23] Paesani S, Brown B J. High-threshold quantum computing by fusing one-dimensional cluster states[J]. Physical Review Letters, 131, 120603(2023).
[24] Sahay K, Claes J, Puri S. Tailoring fusion-based error correction for high thresholds to biased fusion failures[J]. Physical Review Letters, 131, 120604(2023).
[25] Song W, Kang N R, Kim Y S et al. Encoded-fusion-based quantum computation for high thresholds with linear optics[J]. Physical Review Letters, 133, 050605(2024).
[26] Chan M L, Bell T J, Pettersson L A et al. Tailoring fusion-based photonic quantum computing schemes to quantum emitters[EB/OL]. https://arxiv.org/abs/2410.06784v2
[27] Bombin H, Litinski D, Nickerson N et al. Unifying flavors of fault tolerance with the ZX calculus[J]. Quantum, 8, 1379(2024).
[28] Wein S C, de Brugière T G, Music L et al. Minimizing resource overhead in fusion-based quantum computation using hybrid spin-photon devices[EB/OL]. https://arxiv.org/abs/2412.08611v1
[29] Bartolucci S, Birchall P M, Gimeno-Segovia M et al. Creation of entangled photonic states using linear optics[EB/OL]. https://arxiv.org/abs/2106.13825v1
[30] Meng Y J, Faurby C F D, Chan M L et al. Photonic fusion of entangled resource states from a quantum emitter[EB/OL]. https://arxiv.org/abs/2312.09070v1
[31] Browne D E, Rudolph T. Resource-efficient linear optical quantum computation[J]. Physical Review Letters, 95, 010501(2005).
[32] Li Y, Humphreys P C, Mendoza G J et al. Resource costs for fault-tolerant linear optical quantum computing[J]. Physical Review X, 5, 041007(2015).
[33] Calsamiglia J, Lütkenhaus N. Maximum efficiency of a linear-optical bell-state analyzer[J]. Applied Physics B, 72, 67-71(2001).
[34] Grice W P. Arbitrarily complete bell-state measurement using only linear optical elements[J]. Physical Review A, 84, 042331(2011).
[35] Ewert F, van Loock P. 3/4-efficient bell measurement with passive linear optics and unentangled ancillae[J]. Physical Review Letters, 113, 140403(2014).
[36] Zaidi H A, van Loock P. Beating the one-half limit of ancilla-free linear optics bell measurements[J]. Physical Review Letters, 110, 260501(2013).
[37] Lee S W, Park K, Ralph T C et al. Nearly deterministic bell measurement for multiphoton qubits and its application to quantum information processing[J]. Physical Review Letters, 114, 113603(2015).
[38] Lee S W, Park K, Ralph T C et al. Nearly deterministic bell measurement with multiphoton entanglement for efficient quantum-information processing[J]. Physical Review A, 92, 052324(2015).
[39] Bombin H, Martin-Delgado M A. Quantum measurements and gates by code deformation[J]. Journal of Physics A: Mathematical and Theoretical, 42, 095302(2009).
[40] Bravyi S B, Kitaev A Y. Quantum codes on a lattice with boundary[EB/OL]. https://arxiv.org/abs/quant-ph/9811052
[41] Bombin H. Topological order with a twist: Ising anyons from an abelian model[J]. Physical Review Letters, 105, 030403(2010).
[42] Horsman D, Fowler A G, Devitt S et al. Surface code quantum computing by lattice surgery[J]. New Journal of Physics, 14, 123011(2012).
[43] Brown B J, Roberts S. Universal fault-tolerant measurement-based quantum computation[J]. Physical Review Research, 2, 033305(2020).
[44] Webster P, Bartlett S D. Fault-tolerant quantum gates with defects in topological stabilizer codes[J]. Physical Review A, 102, 022403(2020).
[45] Bravyi S, Kitaev A. Universal quantum computation with ideal Clifford gates and noisy ancillas[J]. Physical Review A, 71, 022316(2005).
[46] Bravyi S, Haah J. Magic-state distillation with low overhead[J]. Physical Review A, 86, 052329(2012).
[47] Litinski D. A game of surface codes: large-scale quantum computing with lattice surgery[J]. Quantum, 3, 128(2019).
[48] Bombín H, Dawson C, Mishmash R V et al. Logical blocks for fault-tolerant topological quantum computation[J]. PRX Quantum, 4, 020303(2023).
[49] Herr D, Paler A, Devitt S J et al. A local and scalable lattice renormalization method for ballistic quantum computation[J]. NPJ Quantum Information, 4, 27(2018).
[50] Auger J M, Anwar H, Gimeno-Segovia M et al. Fault-tolerant quantum computation with nondeterministic entangling gates[J]. Physical Review A, 97, 030301(2018).
[51] Hastings M B, Haah J. Dynamically generated logical qubits[J]. Quantum, 5, 564(2021).
[52] Davydova M, Tantivasadakarn N, Balasubramanian S. Floquet codes without parent subsystem codes[J]. PRX Quantum, 4, 020341(2023).
[53] Kesselring M S, Magdalena de la Fuente J C, Thomsen F et al. Anyon condensation and the color code[J]. PRX Quantum, 5, 010342(2024).
[54] Uppu R, Midolo L, Zhou X Y et al. Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum technology[J]. Nature Nanotechnology, 16, 1308-1317(2021).
[55] Li B K, Economou S E, Barnes E. Photonic resource state generation from a minimal number of quantum emitters[J]. NPJ Quantum Information, 8, 11(2022).
[56] Gimeno-Segovia M, Rudolph T, Economou S E. Deterministic generation of large-scale entangled photonic cluster state from interacting solid state emitters[J]. Physical Review Letters, 123, 070501(2019).
[57] Bartolucci S, Birchall P, Bonneau D et al. Switch networks for photonic fusion-based quantum computing[EB/OL]. https://arxiv.org/abs/2109.13760v1
[58] Shor P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, 52, R2493-R2496(1995).
[59] Bonilla Ataides J P, Tuckett D K, Bartlett S D et al. The XZZX surface code[J]. Nature Communications, 12, 2172(2021).
[60] Claes J, Bourassa J E, Puri S. Tailored cluster states with high threshold under biased noise[J]. NPJ Quantum Information, 9, 9(2023).
[61] Bombín H, Dawson C, Nickerson N et al. Increasing error tolerance in quantum computers with dynamic bias arrangement[EB/OL]. https://arxiv.org/abs/2303.16122v1
[62] Ralph T C, Hayes A J F, Gilchrist A. Loss-tolerant optical qubits[J]. Physical Review Letters, 95, 100501(2005).
[63] Bell T J, Pettersson L A, Paesani S. Optimizing graph codes for measurement-based loss tolerance[J]. PRX Quantum, 4, 020328(2023).
[64] Schlingemann D, Werner R F. Quantum error-correcting codes associated with graphs[J]. Physical Review A, 65, 012308(2001).
[65] Xing W B, Hu X M, Guo Y et al. Preparation of multiphoton high-dimensional GHZ states[J]. Optics Express, 31, 24887-24896(2023).
[66] Erhard M, Krenn M, Zeilinger A. Advances in high-dimensional quantum entanglement[J]. Nature Reviews Physics, 2, 365-381(2020).
[67] Hu X M, Zhang C, Liu B H et al. Experimental high-dimensional quantum teleportation[J]. Physical Review Letters, 125, 230501(2020).
[68] Malik M, Erhard M, Huber M et al. Multi-photon entanglement in high dimensions[J]. Nature Photonics, 10, 248-252(2016).
[69] Adcock J C, Vigliar C, Santagati R et al. Programmable four-photon graph states on a silicon chip[J]. Nature Communications, 10, 3528(2019).
[70] Liu Z F, Huang S Y, Chen C et al. Spatial control of photonic quantum states (invited)[J]. Acta Optica Sinica, 44, 1026009(2024).
[71] Gou X X, Li S Z, Shi P et al. Regulation mechanisms and recent progress of optical spin angular momentum (invited)[J]. Acta Optica Sinica, 44, 1026002(2024).
[72] Krenn M, Hochrainer A, Lahiri M et al. Entanglement by path identity[J]. Physical Review Letters, 118, 080401(2017).
[73] Krenn M, Gu X M, Zeilinger A. Quantum experiments and graphs: multiparty states as coherent superpositions of perfect matchings[J]. Physical Review Letters, 119, 240403(2017).
[74] Bao J M, Fu Z R, Pramanik T et al. Very-large-scale integrated quantum graph photonics[J]. Nature Photonics, 17, 573-581(2023).
[75] Wang K, Hou Z H, Qian K Y et al. Entangling independent particles by path identity[J]. Physical Review Letters, 133, 233601(2024).
[76] Chin S, Ryu J, Kim Y S. Exponentially enhanced scheme for the heralded qudit Greenberger-Horne-Zeilinger state in linear optics[J]. Physical Review Letters, 133, 253601(2024).
[77] Chin S, Karczewski M, Kim Y S. Heralded optical entanglement generation via the graph picture of linear quantum networks[J]. Quantum, 8, 1572(2024).
[78] Brendel J, Gisin N, Tittel W et al. Pulsed energy-time entangled twin-photon source for quantum communication[J]. Physical Review Letters, 82, 2594-2597(1999).
[79] Fang B, Menotti M, Liscidini M et al. Three-photon discrete-energy-entangled W state in an optical fiber[J]. Physical review letters, 123, 070508(2019).
[80] Lo H P, Ikuta T, Azuma K et al. Generation of a time-Bin Greenberger-Horne-Zeilinger state with an optical switch[J]. Quantum Science and Technology, 8, 035003(2023).
[81] Wang J W, Zhang P, Cai Y. Advancements in multimode quantum entanglement networks[J]. Chinese Journal of Lasers, 51, 1800003(2024).
[82] Reimer C, Kues M, Roztocki P et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs[J]. Science, 351, 1176-1180(2016).
[83] Meng Y J, Chan M L, Nielsen R B et al. Deterministic photon source of genuine three-qubit entanglement[J]. Nature Communications, 15, 7774(2024).
[84] Wang X L, Luo Y H, Huang H L et al. 18-qubit entanglement with six photons’ three degrees of freedom[J]. Physical Review Letters, 120, 260502(2018).
[85] Liu Q, Liu X, Tian Y et al. Multiphoton path-polarization entanglement through a single gradient metasurface[J]. Advanced Photonics Nexus, 4, 026002(2025).
[86] Lindner N H, Rudolph T. Proposal for pulsed on-demand sources of photonic cluster state strings[J]. Physical Review Letters, 103, 113602(2009).
[87] Appel M H, Tiranov A, Pabst S et al. Entangling a hole spin with a time-Bin photon: a waveguide approach for quantum dot sources of multiphoton entanglement[J]. Physical Review Letters, 128, 233602(2022).
[88] Schwartz I, Cogan D, Schmidgall E R et al. Deterministic generation of a cluster state of entangled photons[J]. Science, 354, 434-437(2016).
[89] Istrati D, Pilnyak Y, Loredo J C et al. Sequential generation of linear cluster states from a single photon emitter[J]. Nature Communications, 11, 5501(2020).
[90] Thomas P, Ruscio L, Morin O et al. Efficient generation of entangled multiphoton graph states from a single atom[J]. Nature, 608, 677-681(2022).
[91] Yang C W, Yu Y, Li J et al. Sequential generation of multiphoton entanglement with a Rydberg superatom[J]. Nature Photonics, 16, 658-661(2022).
[92] Vasconcelos R, Reisenbauer S, Salter C et al. Scalable spin-photon entanglement by time-to-polarization conversion[J]. NPJ Quantum Information, 6, 9(2020).
[93] Lee J P, Villa B, Bennett A J et al. A quantum dot as a source of time-Bin entangled multi-photon states[J]. Quantum Science and Technology, 4, 025011(2019).
[94] Tiurev K, Mirambell P L, Lauritzen M B et al. Fidelity of time-Bin-entangled multiphoton states from a quantum emitter[J]. Physical Review A, 104, 052604(2021).
[95] Hilaire P, Vidro L, Eisenberg H S et al. Near-deterministic hybrid generation of arbitrary photonic graph states using a single quantum emitter and linear optics[J]. Quantum, 7, 992(2023).
[96] Cogan D, Su Z-E, Kenneth O et al. Deterministic generation of indistinguishable photons in a cluster state[J]. Nature Photonics, 17, 324-329(2023).
[97] Coste N, Fioretto D A, Belabas N et al. High-rate entanglement between a semiconductor spin and indistinguishable photons[J]. Nature Photonics, 17, 582-587(2023).
[98] Su Z-E, Taitler B, Schwartz I et al. Continuous and deterministic all-photonic cluster state of indistinguishable photons[J]. Reports on Progress in Physics, 87, 077601(2024).
[99] Huet H, Ramesh P R, Wein S C et al. Deterministic and reconfigurable graph state generation with a single solid-state quantum emitter[EB/OL]. https://arxiv.org/abs/2410.23518v1
[100] Ding X, Guo Y P, Xu M C et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing[J]. Nature Photonics, 19, 387-391(2025).
[101] Thomas P, Ruscio L, Morin O et al. Fusion of deterministically generated photonic graph states[J]. Nature, 629, 567-572(2024).