• High Power Laser and Particle Beams
  • Vol. 32, Issue 1, 011003 (2020)
Wanguo Zheng, Ping Li, Rui Zhang, Ying Zhang, Xuewei Deng, Dangpeng Xu, Xiaoxia Huang, Fang Wang, Junpu Zhao, and Wei Han
Author Affiliations
  • Research Center of Laser Fusion , CAEP, P. O. Box 919-988, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202032.190469 Cite this Article
    Wanguo Zheng, Ping Li, Rui Zhang, Ying Zhang, Xuewei Deng, Dangpeng Xu, Xiaoxia Huang, Fang Wang, Junpu Zhao, Wei Han. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32(1): 011003 Copy Citation Text show less
    References

    [1] Basov N G, Krohkin O H. The conditions of plasma heating by optical generation of radiation[C]Proceedings of the 3rd International Congress on Quantum Electronics, 1963.

    [3] Nuckolls J, Wood L, Thiessen A. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 239, 139-142(1972).

    [4] Moses E, Wuest C R. The National Ignition Facility: status and plans for laser fusion and high-energy-density experimental studies[J]. Fusion Science and Technology, 43, 420(2003).

    [5] André M L. The French Megajoule Laser Project (LMJ)[J]. Fusion Engineering and Design, 44, 43-49(1999).

    [8] Lindl J D, Amendt P, Berger R L. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 11, 339-491(2004).

    [9] Lindl J, Landen O, Edwards J. Review of the National Ignition Campaign 2009-2012[J]. Physics of Plasmas, 21, 020501(2014).

    [10] Wilcox R B, Behrendt W, Browning D F, et al. Fusion laser oscillat pulsefming system using integrated optics[C]Proc of SPIE. 1993, 1870: 5363.

    [11] Skupsky S, Short R W, Kessler T. Improved laser-beam uniformity using the angular dispersion of frequency modulated light[J]. Journal of Applied Physics, 66, 3456-3462(1989).

    [12] Heebner J, Bden M, Miller P, et al. A programmable beam shaping system f tailing the profile of high fluence laser beams[C]Proc of SPIE. 2010, 7842: 40.

    [13] Lin Y, Kessler T J, Lawrence G N. Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance[J]. Optics Letters, 21, 1703-1705(1996).

    [14] Regan S P, Marozas J A, Craxton R S. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams[J]. Journal of the Optical Society of America B Optical Physic, 22, 998-1002(2005).

    [15] Rothenberg J E. Polarization beam smoothing for inertial confinement fusion[J]. Journal of Applied Physics, 87, 3654-3662(2000).

    [16] Moody J D, Macgowan B J, Rothenberg J E. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma[J]. Physical Review Letters, 86, 2810-2813(2001).

    [17] Spaeth M L, Manes K R, Kalantar D H. Description of the NIF laser[J]. Fusion Science and Technology, 69, 25-145(2016).

    [18] Zhang R, Jia H, Tian X. Research of beam conditioning technologies using continuous phase plate, multi-FM smoothing by spectral dispersion and polarization smoothing[J]. Optics and Lasers in engineering, 85, 38-47(2016).

    [22] Zhang Rui, Su Jingqin, Yuan Haoyu, et al. Research of beam conditioning technologies on SGIII laser facility[C]Proc of SPIE, 2014, 9293: 92930E.

    [23] Zhang R, Su J, Wang J. Experimental research on the influences of smoothing by spectral dispersion on the Technical Integration Line[J]. Applied Optics, 50, 687-695(2011).

    [24] Zheng W, Wei X, Zhu Q. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter Radiat Extrem, 2, 243-255(2017).

    [25] Hao L, Zhao Y, Yang D. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SGIII prototype facility with a spectral analysis code[J]. Phys Plasmas, 21, 072705(2014).

    [26] Lan K, Li Z, Xie X. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target[J]. Phys Rev E, 95, 031202(2017).

    [27] Dewald E L, Glenzer S H, Landen O L. First laser–plasma interaction and hohlraum experiments on the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 47, B405-B417(2005).

    [29] Jones O S, Speck D R, Williams W H, et al. The NIF’s power energy ratings f ICFshaped pulses[C]Proc of SPIE. 1998, 3492: 4954

    [30] Hu Dongxia, Dong Jun, Xu Dangpeng. Generation and measurement of complex laser pulse shapes in the SG-III laser facility[J]. Chinese Optics Letters, 13, 041406(2015).

    [31] Li Ping, Wang Wei, Jin Sai. The shaped pulses control and operation on the SG-III prototype facility[J]. Laser physics, 28, 045004(2018).

    [32] Hocquet S, Penninckx D, Gleyze J F. Nonsinusoidal phase modulations for high-power laser performance control: stimulated Brillouin scattering and FM-to-AM conversion[J]. Applied Optics, 49, 1104-1115(2010).

    [33] Browning D F, Rothenberg J E, Wilcox R B. The issue of FM to AM conversion on the National Ignition Facility[C]Proceedings of SPIE. 1999, 3492.

    [34] Hocquet S, Penninckx D, Bordenave E. FM-to-AM conversion in high-power lasers[J]. Applied Optics, 47, 3338-3349(2008).

    [35] Xu D, Wang J, Li M. Weak etalon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems[J]. Optics Express, 18, 6621-6627(2010).

    [36] Li Rao, Fan Wei, Jiang Youen. Tunable compensation of GVD-induced FM–AM conversion in the front end of high-power lasers[J]. Appl Opt, 56, 993-998(2017).

    [37] Li Ping, Wang Wei, Su Jingqin. Analysis on FM-to-AM conversion of SSD beam induced by etalon effect in a high-power laser system[J]. High Power Laser Science and Engineering, 7(2019).

    [38] Bagnoud V, Zuegel J D. Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator[J]. Optics Letters, 29, 295-297(2004).

    [39] Bespalov V I, Talanov VI. Filamentary structure of light beams in nonlinear liquids[J]. JETP Lett, 3, 307-310(1966).

    [40] Campillo A J, Shapiro S L, Suydam B R. Periodic breakup of optical beams due to self-focusing[J]. Applied Physics Letters, 23, 628-630(1974).

    [41] Jokipii J R, Marburger J. Homogeneity requirements for minimizing self-focusing damage by strong electromagnetic waves[J]. Applied Physics Letters, 23, 696-698(1974).

    [42] Jia Huaiting, Xu Bing, Wang Fang. Small-scale self-focusing in a tapered optical beam[J]. Applied Optics, 51, 6089-6094(2012).

    [43] Wen Shuangchun, Fan Dianyuan. Small-scale self-focusing of intense laser beams in the presence of vector effect[J]. Chin Phys Lett, 17, 731-733(2000).

    [44] Parham T G, Azevedo S, Chang J, et al. Large aperture optics perfmance. 2009, LLNLTR410955.

    [45] Manes K R, Spaeth M L, Adams J J. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 69, 146-249(2016).

    [47] Hunt J T, Manes K R, Renard P A. Hot images from obscurations[J]. Appl Opt, 32, 5973-5982(1993).

    [48] Wang Y W, Wen S C, Zhang L F. Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss[J]. Appl Opt, 47, 1152-1163(2008).

    [49] Millerd J E, Brock N J, Hayes J B, et al. Modern approaches in phase measuring metrology [C]Proc of SPIE. 2005, 5856: 1322.

    [50] Ravizza F L, Nostr M C, Kegelmeyer L M, et al. Process f rapid detection of fratricidal defects on optics using Linescan Phase Differential Imaging [R]. LLNLPROC420837, 2009.

    [53] Li Ping, Jin Sai, Zhao Runchang. The special shaped laser spot for driving indirect-drive hohlraum with multi-beam incidence[J]. High Power Laser Science and Engineering, 5, 49-54(2017).

    CLP Journals

    [1] Ju Wang, Daxing Rao, Ruijing He, Yanqi Gao, Yong Cui, Xiaohui Zhao, Haitao Shi, Zhan Sui, Changqing Huang. Influence of amplitude modulator on time-frequency characteristics of broadband low coherence light[J]. High Power Laser and Particle Beams, 2023, 35(5): 052001

    Wanguo Zheng, Ping Li, Rui Zhang, Ying Zhang, Xuewei Deng, Dangpeng Xu, Xiaoxia Huang, Fang Wang, Junpu Zhao, Wei Han. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32(1): 011003
    Download Citation