• Acta Optica Sinica
  • Vol. 45, Issue 5, 0523001 (2025)
Haidong Miao1,2, Jianwei Jiang3, and Jing Wu1,*
Author Affiliations
  • 1College of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • 2College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 3College of Sciences, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu , China
  • show less
    DOI: 10.3788/AOS241795 Cite this Article Set citation alerts
    Haidong Miao, Jianwei Jiang, Jing Wu. Influence of Bonding Structure and Pumping Optical Parameters on Thermal Effects in Ho∶YAG Laser Crystals[J]. Acta Optica Sinica, 2025, 45(5): 0523001 Copy Citation Text show less
    References

    [1] Chizhikov A I, Mukhin A V, Egorov N A et al. High-efficiency KYW acousto-optic Q-switch for a Ho∶YAG laser[J]. Optics Letters, 47, 1085-1088(2022).

    [2] Wang J L, Song Q S, Sun Y W et al. High-performance Ho∶YAG single-crystal fiber laser in-band pumped by a Tm-doped all-fiber laser[J]. Optics Letters, 44, 455-458(2019).

    [3] Yao W C, Li E H, Shen Y J et al. A 142 W Ho∶YAG laser single-end-pumped by a Tm-doped fiber laser at 1931 nm[J]. Laser Physics Letters, 16, 115001(2019).

    [4] Zhao T, Yang X F. Actively Q-switched operation of a resonantly pumped polycrystalline ceramic Ho∶YAG laser[J]. Optical Engineering, 57, 026121(2018).

    [5] Wang F, Liang C H, Yuan Y S et al. Generalized multi-Gaussian correlated schell-model beam: from theory to experiment[J]. Optics Express, 22, 23456-23464(2014).

    [6] Li N, Huang H Z, Shi F et al. 12.1 W, 2129 nm Ho∶YAP laser based on Tm∶YAG laser intra‑cavity pumping[J]. Chinese Journal of Lasers, 51, 2201005(2024).

    [7] Zhao L L, Tian J T, Wang H et al. Ho∶YLF laser with narrow pulse width and high peak power pumped by Tm∶YAP laser[J]. Chinese Journal of Lasers, 50, 1401004(2023).

    [8] So S, MacKenzie J I, Shepherd D P et al. Intra-cavity side-pumped Ho∶YAG laser[J]. Optics Express, 14, 10481-10487(2006).

    [9] Aus der Au J, Spühler G J, Südmeyer T et al. 16.2-W average power from a diode-pumped femtosecond Yb∶YAG thin disk laser[J]. Optics Letters, 25, 859-861(2000).

    [10] Lippert E, Rustad G, Arisholm G et al. High power and efficient long wave IR ZnGeP2 parametric oscillator[J]. Optics Express, 16, 13878-13884(2008).

    [11] Shen Y J, Yao B Q, Duan X M et al. 103 W in-band dual-end-pumped Ho∶YAG laser[J]. Optics Letters, 37, 3558-3560(2012).

    [12] Li J, Chen Q, Wu W J et al. Densification and optical properties of transparent Ho∶YAG ceramics[J]. Optical Materials, 35, 748-752(2013).

    [13] Sheik-Bahae M, Said A A, Wei T H et al. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE Journal of Quantum Electronics, 26, 760-769(1990).

    [14] Gao J M, Long Q L, Han Q W et al. 12.7 W intra-cavity pumped Ho∶YAG laser with near-diffraction-limited beam quality[J]. Optics Express, 31, 17175-17184(2023).

    [15] Ho Y, Gruhler A, Heilbut A et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry[J]. Nature, 415, 180-183(2002).

    [16] Okhrimchuk A G, Shestakov A V, Khrushchev I et al. Depressed cladding, buried waveguide laser formed in a YAG∶Nd3+ crystal by femtosecond laser writing[J]. Optics Letters, 30, 2248-2250(2005).

    [17] Beaud P, Zysset B, Schwarzenbach A P et al. 1.3-μ subpicosecond pulses from a dye laser pumped by compressed Nd∶YAG-laser pulses[J]. Optics Letters, 11, 24-26(1986).

    [18] Zhu S J, Zhu X L, Liu L et al. Theoretical and experimental studies of the spectral changes of a polychromatic partially coherent radially polarized beam[J]. Optics Express, 21, 27682-27696(2013).

    [19] Russbueldt P, Mans T, Weitenberg J et al. Compact diode-pumped 1.1 kW Yb∶YAG innoslab femtosecond amplifier[J]. Optics Letters, 35, 4169-4171(2010).

    [20] Li P, Liu S, Peng T et al. Spiral autofocusing Airy beams carrying power-exponent-phase vortices[J]. Optics Express, 22, 7598-7606(2014).

    [21] Su L B, Ma F K, Zhang Z et al. Local structure design and application of rare-earth doped alkaline earth fluorite laser crystal (invited)[J]. Laser & Optoelectronics Progress, 61, 0116002(2024).

    [22] Zhao C C, Li S M, Xu M et al. Research progress in laser crystals[J]. Chinese Journal of Lasers, 51, 1101022(2024).

    [23] Song X L, Guo Z, Li B B et al. Thermal relaxation time of crystal in pulsed laser diode end-pumped solid-state laser[J]. Chinese Journal of Lasers, 35, 1132-1138(2008).

    [24] Li H X, Li L, Nie J P et al. Transient temperature filed of Nd∶YAG microchip end-pumped by quasi-CW diode laser[J]. Laser & Infrared, 42, 377-381(2012).

    [25] Jin G Y, Wu J, Wu C T et al. Pulsed laser diode dual-end pumped Tm∶YAG rod transient thermal effect analysis[J]. Chinese Journal of Lasers, 40, 1002002(2013).

    [26] Ren T W, Zhao L, Fan Z et al. Transient thermal effect analysis and laser characteristics of novel Tm∶LuYAG crystal[J]. Infrared Physics & Technology, 125, 104238(2022).

    Haidong Miao, Jianwei Jiang, Jing Wu. Influence of Bonding Structure and Pumping Optical Parameters on Thermal Effects in Ho∶YAG Laser Crystals[J]. Acta Optica Sinica, 2025, 45(5): 0523001
    Download Citation