• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 4, 430 (2020)
Jing LIU1, Jing-Ling SHEN2, Cun-Lin ZHANG3、*, and Yue-Jin ZHAO1
Author Affiliations
  • 1School of Optoelectronics, Beijing Institute of Technology, Beijing0008, China
  • 2Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing100048, China
  • 3School of Optoelectronics, Beijing Institute of Technology, Beijing0008, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.04.006 Cite this Article
    Jing LIU, Jing-Ling SHEN, Cun-Lin ZHANG, Yue-Jin ZHAO. Photo-excited tunable metamaterial and its sensing application[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 430 Copy Citation Text show less
    References

    [1] H T Chen, W J Padilla, J M Zide. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [2] R Singh, C Wei, I Alnaib. Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces. Applied Physics Letters, 105, 41-48(2014).

    [3] J B Pendry, D Schurig, D R Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [4] L Ulf. Optical conformal mapping. Science, 312, 1777-1780(2006).

    [5] S Zhang, Y-S Park, J Li. Negative Refractive Index in Chiral Metamaterials. Physical Review Letters, 102, 023901(2009).

    [6] X Shen, T J Cui. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber. Journal of Optics, 14, 114012(2012).

    [7] S Nian-Hai, M Maria, G Mutlu. Optically implemented broadband blueshift switch in the terahertz regime. Physical Review Letters, 106, 037403(2011).

    [8] G Wang, J Zhang, Z Bo. Photo-excited terahertz switch based on composite metamaterial structure. Optics Communications, 374, 64-68(2016).

    [9] J Zhang, G Wang, Z Bo. Photo-excited broadband tunable terahertz metamaterial absorber. Optical Materials, 54, 32-36(2016).

    [10] J George, C S Menon. Electrical and optical properties of electron beam evaporated ITO thin films. Surface & Coatings Technology, 132, 45-48(2000).

    [11] M Rahm, J S Li, W J Padilla. THz wave modulators: A brief review on different modulation techniques. Journal of Infrared Millimeter & Terahertz Waves, 34, 1-27(2013).

    [12] J Zhu, J Han, T Zhen. Thermal broadband tunable Terahertz metamaterials. Optics Communications, 284, 3129-3133(2011).

    [13] X Ling, Z Xiao, X Zheng. Tunable terahertz metamaterial absorber and the sensing application. Journal of Materials Science Materials in Electronics, 29, 1-7(2017).

    [14] N A Hewish, G W Neilson, J E Enderby. Environment of Ca2+ ions in aqueous solvent. Nature, 297, 138-139(1982).

    [15] Q Dai, J J Xu, H J Li. Ion association characteristics in MgCl2 and CaCl2 aqueous solutions: a density functional theory and molecular dynamics investigation. Molecular Physics, 113, 3545-3558(2015).

    [16] Z R Kann, J L Skinner. Low-frequency dynamics of aqueous alkali chloride solutions as probed by terahertz spectroscopy. Journal of Chemical Physics, 144, 1(2016).

    [17] J Q Gu. Research on terahertz metamaterials(2010).

    [18] N Q Vinh, M S Sherwin, S J Allen. High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water. The Journal of Chemical Physics, 142, 164502(2015).

    Jing LIU, Jing-Ling SHEN, Cun-Lin ZHANG, Yue-Jin ZHAO. Photo-excited tunable metamaterial and its sensing application[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 430
    Download Citation