• Journal of Semiconductors
  • Vol. 41, Issue 12, 122502 (2020)
Jingjing Zhang1, Jin Yang1, Liangzhong Lin2, and JiaJi Zhu1
Author Affiliations
  • 1School of Science and Laboratory of Quantum Information Technology, Chongqing University of Posts and Telecommunications, Chongqing 400061, China
  • 2School of Information Engineering, Zhongshan Polytechnic, Zhongshan 528400, China
  • show less
    DOI: 10.1088/1674-4926/41/12/122502 Cite this Article
    Jingjing Zhang, Jin Yang, Liangzhong Lin, JiaJi Zhu. An antiferromagnetic two-dimensional material: Chromium diiodides monolayer[J]. Journal of Semiconductors, 2020, 41(12): 122502 Copy Citation Text show less
    References

    [1] A M Tokmachev, D V Averyanov, O E Parfenov et al. Emerging two-dimensional ferromagnetism in silicene materials. Nat Commun, 9, 1672(2018).

    [2] X Y Shi, Z J Huang, M Huttula et al. Introducing magnetism into 2D nonmagnetic inorganic layered crystals: A brief review from first-principles aspects. Crystals, 8, 24(2018).

    [3] P Tao, H H Guo, T Yang et al. Strain-induced magnetism in MoS2 monolayer with defects. J Appl Phys, 115, 054305(2014).

    [4] V Kochat, A Apte, J A Hachtel et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv Mater, 29, 1703754(2017).

    [5] A Hallal, F Ibrahim, H X Yang et al. Tailoring magnetic insulator proximity effects in graphene: First-principles calculations. 2D Mater, 4, 025074(2017).

    [6] N D Mermin, H Wagner. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 17, 1133(1966).

    [7] N H Miao, B Xu, L G Zhu et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 140, 2417(2018).

    [8] X Lin, W Yang, K L Wang et al. Two-dimensional spintronics for low-power electronics. Nat Electron, 2, 274(2019).

    [9] B Huang, G Clark, E Navarro-Moratalla et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 546, 270(2017).

    [10] C Gong, L Li, Z L Li et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 546, 265(2017).

    [11] X L Sheng, B K Nikolić. Monolayer of the 5d transition metal trichloride OsCl3: A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions. Phys Rev B, 95, 201402(2017).

    [12] C T Kuo, M Neumann, K Balamurugan et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der waals crystals. Sci Rep, 6, 20904(2016).

    [13] W Zhu, W Gan, Z Muhammad et al. Exfoliation of ultrathin FePS3 layers as a promising electrocatalyst for the oxygen evolution reaction. Chem Commun, 54, 4481(2018).

    [14] X X Li, J L Yang. CrXTe3(X = Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors. J Mater Chem C, 2, 7071(2014).

    [15] H L Zhuang, P R C Kent, R G Hennig. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys Rev B, 93, 134407(2016).

    [16] C S Yadav, A K Rastogi. Transport and magnetic properties of FexVSe2 (x = 0–0.33). J Phys: Condens Matter, 20, 465219(2008).

    [17] J J Sun, C Li, D Chen et al. Controlled synthesis of ferromagnetic MnSex particles. Chin Phys B, 25, 107405(2016).

    [18] J L Lado, J Fernández-Rossier. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 4, 035002(2017).

    [19] M Abramchuk, S Jaszewski, K R Metz et al. Controlling magnetic and optical properties of the van der waals crystal CrCl3−xBrx via mixed halide chemistry. Adv Mater, 30, 1801325(2018).

    [20] M Gibertini, M Koperski, A F Morpurgo et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 14, 408(2019).

    [21] S J Gong, C Gong, Y Y Sun et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. PNAS, 115, 8511(2018).

    [22] P Hohenberg, W Kohn. Inhomogeneous electron gas. Phys Rev, 136, b864(1964).

    [23] W Kohn, L J Sham. Self-consistent equations including exchange and correlation effects. Phys Rev, 140, a1133(1965).

    [24] G Kresse, J Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 49, 14251(1994).

    [25] G Kresse, J Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 6, 15(1996).

    [26] G Kresse, J Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 54, 11169(1996).

    [27] P E Blöchl. Projector augmented-wave method. Phys Rev B, 50, 17953(1994).

    [28] G Kresse, D Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 59, 1758(1999).

    Jingjing Zhang, Jin Yang, Liangzhong Lin, JiaJi Zhu. An antiferromagnetic two-dimensional material: Chromium diiodides monolayer[J]. Journal of Semiconductors, 2020, 41(12): 122502
    Download Citation