• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111427 (2020)
Meng Li1、2, Qian Zhang1、2, Dong Yang1、2, Qihuang Gong1、2、3, and Yan Li1、2、3、*
Author Affiliations
  • 1State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
  • 2Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/LOP57.111427 Cite this Article Set citation alerts
    Meng Li, Qian Zhang, Dong Yang, Qihuang Gong, Yan Li. Femtosecond Laser Writing of Depressed Cladding Waveguide and Its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111427 Copy Citation Text show less
    References

    [1] Liu F, Zhang F, Bian H et al. Development and preparation of refractive infrared microlens array device[J]. Laser & Optoelectronics Progress, 57, 071607(2020).

    [2] Zhang J Z, Chen F, Yong J L et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 55, 110001(2018).

    [3] Wei C, Ma Y P, Han Y et al. Femtosecond laser processing of ultrahard materials[J]. Laser & Optoelectronics Progress, 56, 190003(2019).

    [4] Chang J W, Xu M N, Wang D et al. Control of filament by shaped femtosecond pulses in fused silica[J]. Acta Optica Sinica, 39, 0126021(2019).

    [5] Qiao L L, Chu W, Wang Z et al. Three-dimensional microfabrication by shaped femtosecond laser pulses[J]. Acta Optica Sinica, 39, 0126012(2019).

    [6] Shi Y, Xu B, Wu D et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology[J]. Chinese Journal of Lasers, 46, 1000001(2019).

    [7] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).

    [8] Okhrimchuk A G, Shestakov A V, Khrushchev I et al. Depressed cladding, buried waveguide laser formed in a YAG∶Nd 3+ crystal by femtosecond laser writing[J]. Optics Letters, 30, 2248-2250(2005).

    [9] Wang L, Zhang X T, Li L Q et al. Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO: LiTaO3 crystal[J]. Optics Express, 27, 2101-2111(2019).

    [10] Jia Y C. Vázquez de Aldana J R, Lu Q M, et al. Second harmonic generation of violet light in femtosecond-laser-inscribed BiB3O6 cladding waveguides[J]. Optical Materials Express, 3, 1279-1284(2013).

    [11] Lancaster D G, Gross S, Fuerbach A et al. Versatile large-mode-area femtosecond laser-written Tm: ZBLAN glass chip lasers[J]. Optics Express, 20, 27503-27509(2012).

    [12] Lancaster A, Cook G. McDaniel S, et al. Mid-infrared laser emission from Fe: ZnSe cladding waveguides[J]. Applied Physics Letters, 107, 031108(2015).

    [13] Kroesen S, Horn W, Imbrock J et al. Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing[J]. Optics Express, 22, 23339-23348(2014).

    [14] Zhang Q, Li M, Xu J et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering[J]. Photonics Research, 7, 503-507(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ190508000060kQnTqW

    [15] Skryabin N, Kalinkin A, Dyakonov I V et al. Femtosecond laser written depressed-cladding waveguide 2×2, 1×2 and 3×3 directional couplers in Tm 3+∶YAG crystal[J]. Micromachines, 11, 1(2019).

    [16] Ren Y Y, Zhang L M, Xing H G et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti∶Sapphire crystal[J]. Optics & Laser Technology, 103, 82-88(2018).

    [17] Gretzinger T, Gross S, Arriola A et al. Towards a photonic mid-infrared nulling interferometer in chalcogenide glass[J]. Optics Express, 27, 8626-8638(2019).

    [18] Chen F. Vázquez de Aldana J R. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser & Photonics Reviews, 8, 251-275(2014).

    [19] Marshall G D, Politi A. Matthews J C F, et al. Laser written waveguide photonic quantum circuits[J]. Optics Express, 17, 12546-12554(2009).

    [20] Osellame R, Lobino M, Chiodo N et al. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient[J]. Applied Physics Letters, 90, 241107(2007).

    [21] Burghoff J, Nolte S, Tünnermann A. Origins of waveguiding in femtosecond laser-structured LiNbO3[J]. Applied Physics A, 89, 127-132(2007).

    [22] Rodenas A, Kar A K. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing[J]. Optics Express, 19, 17820-17833(2011).

    [23] Macdonald J R, Thomson R R, Beecher S J et al. Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe[J]. Optics Letters, 35, 4036-4038(2010).

    [24] Ródenas A, Torchia G A, Lifante G et al. Refractive index change mechanisms in femtosecond laser written ceramic Nd∶YAG waveguides: micro-spectroscopy experiments and beam propagation calculations[J]. Applied Physics B, 95, 85-96(2009).

    [25] Torchia G A, Rodenas A, Benayas A et al. Highly efficient laser action in femtosecond-written Nd∶Yttrium aluminum garnet ceramic waveguides[J]. Applied Physics Letters, 92, 111103(2008).

    [26] Siebenmorgen J, Petermann K, Huber G et al. Femtosecond laser written stress-induced Nd∶Y3Al5O12 (Nd∶YAG) channel waveguide laser[J]. Applied Physics B, 97, 251(2009).

    [27] Liu H, Jia Y. Vázquez de Aldana J R, et al. Femtosecond laser inscribed cladding waveguides in Nd∶YAG ceramics: fabrication, fluorescence imaging and laser performance[J]. Optics Express, 20, 18620-18629(2012).

    [28] Liu H P, Cheng C, Romero C et al. Graphene-based Y-branch laser in femtosecond laser written Nd∶YAG waveguides[J]. Optics Express, 23, 9730-9735(2015).

    [29] Wu P F, He S, Liu H L. Annular waveguide lasers at 1064 nm in Nd∶YAG crystal produced by femtosecond laser inscription[J]. Applied Optics, 57, 5420-5424(2018).

    [30] Nie W J, Cheng C, Jia Y C et al. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd∶YAP crystal by direct femtosecond laser writing[J]. Optics Letters, 40, 2437-2440(2015).

    [31] Nie W J, Jia Y C. Vazquez de Aldana J R, et al. Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription[J]. Scientific Reports, 6, 22310(2016).

    [32] Jia Y C. Vazquez de Aldana J R, Chen F. Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb∶YAG ceramics[J]. Optical Materials Express, 3, 645-650(2013).

    [33] Wu P F, Zhu S H, Hong M H et al. Specklegram temperature sensor based on femtosecond laser inscribed depressed cladding waveguides in Nd∶YAG crystal[J]. Optics & Laser Technology, 113, 11-14(2019).

    [34] Cheng C, Romero C. Vázquez de Aldana J R V, et al. Superficial waveguide splitters fabricated by femtosecond laser writing of LiTaO3 crystal[J]. Optical Engineering, 54, 067113(2015).

    [35] Zhang Q, Yang D, Qi J et al. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering[J]. Optics Express, 25, 13263-13270(2017).

    [36] Qi J, Wang P, Liao Y et al. Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses[J]. Optical Materials Express, 6, 2554-2559(2016).

    [37] Wang P, Qi J, Liu Z et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing[J]. Scientific Reports, 7, 41211(2017).

    [38] Liao Y, Qi J, Wang P et al. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam[J]. Scientific Reports, 6, 28790(2016).

    [39] Gross S, Jovanovic N, Sharp A et al. Low loss mid-infrared ZBLAN waveguides for future astronomical applications[J]. Optics Express, 23, 7946-7956(2015).

    [40] Tepper J, Labadie L, Gross S et al. Ultrafast laser inscription in ZBLAN integrated optics chips for mid-IR beam combination in astronomical interferometry[J]. Optics Express, 25, 20642-20653(2017).

    [41] Lancaster D G, Gross S, Ebendorff-Heidepriem H et al. Fifty percent internal slope efficiency femtosecond direct-written Tm 3+∶ ZBLAN waveguide laser[J]. Optics Letters, 36, 1587-1589(2011).

    [42] Gross S, Ams M, Lancaster D G et al. Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN[J]. Optics Letters, 37, 3999-4001(2012).

    [43] Salamu G, Jipa F, Zamfirescu M et al. Laser emission from diode-pumped Nd∶YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique[J]. Optics Express, 22, 5177-5182(2014).

    [44] Gross S, Ams M, Palmer G et al. Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics[J]. International Journal of Applied Glass Science, 3, 332-348(2012).

    [45] Okhrimchuk A G, Yatsenko Y P, Smayev M P et al. Nonlinear properties of the depressed cladding single mode TeO2-WO3-Bi2O3 channel waveguide fabricated by direct laser writing[J]. Optical Materials Express, 8, 3424-3437(2018).

    [46] Smayev M P, Dorofeev V V, Moiseev A N et al. Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass[J]. Journal of Non-Crystalline Solids, 480, 100-106(2018).

    [47] Zhang Y J, Zhang G D, Bai J et al. Double line and tubular depressed cladding waveguides written by femtosecond laser irradiation in PTR glass[J]. Optical Materials Express, 7, 2626-2635(2017).

    [48] Okhrimchuk A, Mezentsev V, Shestakov A et al. Low loss depressed cladding waveguide inscribed in YAG: Nd single crystal by femtosecond laser pulses[J]. Optics Express, 20, 3832-3843(2012).

    [49] Weis R S, Gaylord T K. Lithium niobate: Summary of physical properties and crystal structure[J]. Applied Physics A, 37, 191-203(1985).

    [50] Chen F. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams[J]. Journal of Applied Physics, 106, 081101(2009).

    [51] Apetrei A M, Rambu A P, Tascu S. Evaluation of low index contrast in lithium niobate waveguides at telecom wavelengths[J]. Optics & Laser Technology, 111, 156-162(2019).

    [52] Zelmon D E, Small D L, Jundt D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide-doped lithium niobate[J]. Journal of the Optical Society of America B, 14, 3319-3322(1997).

    [53] Gui L, Xu B X, Chong T C. Microstructure in lithium niobate by use of focused femtosecond laser pulses[J]. IEEE Photonics Technology Letters, 16, 1337-1339(2004).

    [54] Thomas J, Heinrich M, Zeil P et al. Laser direct writing: enabling monolithic and hybrid integrated solutions on the lithium niobate platform[J]. Physica Status Solidi, 208, 276-283(2011).

    [55] He R, An Q, Jia Y et al. Femtosecond laser micromachining of lithium niobate depressed cladding waveguides[J]. Optical Materials Express, 3, 1378-1384(2013).

    [56] An Q, Ren Y, Jia Y et al. Mid-infrared waveguides in zinc sulfide crystal[J]. Optical Materials Express, 3, 466-471(2013).

    [57] Bérubé J P, Lapointe J, Dupont A et al. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire[J]. Optics Letters, 44, 37-40(2019).

    [58] Ren Y, Jiao Y. Vázquez de Aldana J R, et al. Ti∶Sapphire micro-structures by femtosecond laser inscription: guiding and luminescence properties[J]. Optical Materials, 58, 61-66(2016).

    [59] Sotillo B, Bharadwaj V, Hadden J P et al. Diamond photonics platform enabled by femtosecond laser writing[J]. Scientific Reports, 6, 35566(2016).

    [60] Bharadwaj V, Wang Y, Fernandez T T et al. Femtosecond laser written diamond waveguides: a step towards integrated photonics in the far infrared[J]. Optical Materials, 85, 183-185(2018).

    [61] Hanafi H, Kroesen S, Lewes-Malandrakis G et al. Polycrystalline diamond photonic waveguides realized by femtosecond laser lithography[J]. Optical Materials Express, 9, 3109-3114(2019).

    [62] Guerra-Olvera C, Castillo G R, Penilla E H et al. Circular depressed cladding waveguides in mechanically robust, biocompatible nc-YSZ transparent ceramics by fs laser pulses[J]. Journal of Lightwave Technology, 37, 3119-3126(2019).

    [63] Salamu G, Jipa F, Zamfirescu M et al. Cladding waveguides realized in Nd∶YAG ceramic by direct femtosecond-laser writing with a helical movement technique[J]. Optical Materials Express, 4, 790-797(2014).

    [64] Long X, Bai J, Zhao W et al. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams[J]. Optics Letters, 37, 3138-3140(2012).

    [65] Li R, Nie W J, Lu Q M et al. Femtosecond-laser-written superficial cladding waveguides in Nd∶CaF2 crystal[J]. Optics & Laser Technology, 92, 163-167(2017).

    [66] Llamas V, Loiko P, Kifle E et al. Ultrafast laser inscribed waveguide lasers in Tm∶CALGO with depressed-index cladding[J]. Optics Express, 28, 3528-3540(2020).

    [67] Liu H L. Vazquez de Aldana J R, Hong M H, et al. Femtosecond laser inscribed Y-branch waveguide in Nd∶YAG crystal: fabrication and continuous-wave lasing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 227-230(2016).

    [68] Dong M M, Wang C W, Wu Z X et al. Waveguides fabricated by femtosecond laser exploiting both depressed cladding and stress-induced guiding core[J]. Optics Express, 21, 15522-15529(2013).

    [69] Liu H, Chen F. Vázquez de Aldana J R, et al. Femtosecond-laser inscribed double-cladding waveguides in Nd∶YAG crystal: a promising prototype for integrated lasers[J]. Optics Letters, 38, 3294-3297(2013).

    [70] Lü J, Cheng Y Z. Vázquez de Aldana J R, et al. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal[J]. Journal of Lightwave Technology, 34, 3587-3591(2016).

    [71] Jia Y, Cheng C. Vázquez de Aldana J R, et al. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes[J]. Scientific Reports, 4, 5988(2015).

    [72] Salamu G, Jipa F, Zamfirescu M et al. Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd∶YAG by direct femtosecond-laser writing[J]. IEEE Photonics Journal, 8, 1-9(2016).

    [73] Jia Y, Chen F. Vázquez de Aldana J R. Efficient continuous-wave laser operation at 1064 nm in Nd∶YVO4 cladding waveguides produced by femtosecond laser inscription[J]. Optics Express, 20, 16801-16806(2012).

    [74] Ren Y. Vázquez de Aldana J R, Chen F, et al. Channel waveguide lasers in Nd∶LGS crystals[J]. Optics Express, 21, 6503-6508(2013).

    [75] Zhu H Y, Huang C H, Zhang G et al. High-power CW diode-side-pumped 1341nm Nd∶YAP laser[J]. Optics Communications, 270, 296-300(2007).

    [76] Pavel N, Salamu G, Voicu F et al. Efficient laser emission in diode-pumped Nd∶YAG buried waveguides realized by direct femtosecond-laser writing[J]. Laser Physics Letters, 10, 095802(2013).

    [77] Tan Y, Jia Y, Chen F et al. Simultaneous dual-wavelength lasers at 1064 and 1342 nm in femtosecond-laser-written Nd∶YVO4 channel waveguides[J]. Journal of the Optical Society of America B, 28, 1607-1610(2011).

    [78] Ren Y, Chen F. Vázquez de Aldana J R. Near-infrared lasers and self-frequency-doubling in Nd∶YCOB cladding waveguides[J]. Optics Express, 21, 11562-11567(2013).

    [79] Kroesen S, Tekce K, Imbrock J et al. Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity[J]. Applied Physics Letters, 107, 101109(2015).

    [80] Imbrock J, Wesemann L, Kroesen S et al. Waveguide-integrated three-dimensional quasi-phase-matching structures[J]. Optica, 7, 28-34(2020).

    [81] Romero C, Ajates J G, Chen F et al. Fabrication of tapered circular depressed-cladding waveguides in Nd∶YAG crystal by femtosecond-laser direct inscription[J]. Micromachines, 11, 10(2019).

    [82] Ajates J G, Romero C, Castillo G R et al. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd∶YAG crystal: a route to integrate complex photonic circuits in crystals[J]. Optical Materials, 72, 220-225(2017).

    [83] Li S L, Ye Y K, Shen C Y et al. Femtosecond laser inscribed cladding waveguide structures in LiNbO3 crystal for beam splitters[J]. Optical Engineering, 57, 117103(2018).

    [84] Ajates J G. Vázquez de Aldana J R, Chen F, et al. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides[J]. Optical Materials Express, 8, 1890-1901(2018).

    [85] Xu J, Liao Y, Zeng H D et al. Selective metallization on insulator surfaces with femtosecond laser pulses[J]. Optics Express, 15, 12743-12748(2007).

    [86] Liao Y, Xu J, Sun H et al. Fabrication of microelectrodes deeply embedded in LiNbO3 using a femtosecond laser[J]. Applied Surface Science, 254, 7018-7021(2008).

    [87] Xu J, Wu D, Ip J Y et al. Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis[J]. RSC Advances, 5, 24072-24080(2015).

    Meng Li, Qian Zhang, Dong Yang, Qihuang Gong, Yan Li. Femtosecond Laser Writing of Depressed Cladding Waveguide and Its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111427
    Download Citation