• Advanced Photonics
  • Vol. 5, Issue 2, 026002 (2023)
Wenhe Jia1、†, Chenxin Gao1, Yongmin Zhao2, Liu Li1, Shun Wen1, Shuai Wang1, Chengying Bao1、*, Chunping Jiang2、*, Changxi Yang1, and Yuanmu Yang1、*
Author Affiliations
  • 1Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China
  • 2Chinese Academy of Sciences, Suzhou Institute of Nano-Tech and Nano-Bionics, Key Laboratory of Nanodevices and Applications, Suzhou, China
  • show less
    DOI: 10.1117/1.AP.5.2.026002 Cite this Article Set citation alerts
    Wenhe Jia, Chenxin Gao, Yongmin Zhao, Liu Li, Shun Wen, Shuai Wang, Chengying Bao, Chunping Jiang, Changxi Yang, Yuanmu Yang. Intracavity spatiotemporal metasurfaces[J]. Advanced Photonics, 2023, 5(2): 026002 Copy Citation Text show less
    References

    [1] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [2] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [3] K. Koshelev, Y. Kivshar. Dielectric resonant metaphotonics. ACS Photonics, 8, 102-112(2020).

    [4] J. Yang et al. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys., 85, 036101(2022).

    [5] X. Chen et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun., 3, 1198(2012).

    [6] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [7] X. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [8] L. Huang et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [9] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [10] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [11] Y. Yang et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett., 14, 1394-1399(2014).

    [12] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [13] H. Chung et al. E-band metasurface-based orbital angular momentum multiplexing and demultiplexing. Laser Photonics Rev., 16, 2100456(2022).

    [14] L. Chen et al. Spatiotemporal control of femtosecond pulses. CLEO: Appl. and Technol., JTh2P.2.

    [15] E. Maguid et al. Topologically controlled intracavity laser modes based on pancharatnam-berry phase. ACS Photonics, 5, 1817-1821(2018).

    [16] H. Sroor et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 14, 498-503(2020).

    [17] L. Gui et al. 60-nm-span wavelength-tunable vortex fiber laser with intracavity plasmon metasurfaces(2022).

    [18] A. Forbes. Structured light from lasers. Laser Photonics Rev., 13, 1900140(2019).

    [19] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [20] V. V. Zubyuk et al. Low-power absorption saturation in semiconductor metasurfaces. ACS Photonics, 6, 2797-2806(2019).

    [21] J. Wang et al. Saturable plasmonic metasurfaces for laser mode locking. Light Sci. Appl., 9, 50(2020).

    [22] X. Niu et al. Epsilon-near-zero photonics: a new platform for integrated devices. Adv. Opt. Mater., 6, 1701292(2018).

    [23] O. Reshef et al. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater., 4, 535-551(2019).

    [24] N. Kinsey et al. Near-zero-index materials for photonics. Nat. Rev. Mater., 4, 742-760(2019).

    [25] J. Wu et al. Epsilon-near-zero photonics: infinite potentials. Photonics Res., 9, 1616-1644(2021).

    [26] J. D. Caldwell et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics, 4, 44-68(2015).

    [27] F. Hu et al. Two-plasmon spontaneous emission from a nonlocal epsilon-near-zero material. Commun. Phys., 4, 84(2021).

    [28] X. Wen et al. Doubly enhanced second harmonic generation through structural and epsilon-near-zero resonances in TiN nanostructures. ACS Photonics, 5, 2087-2093(2018).

    [29] G. V. Naik, V. M. Shalaev, A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264-3294(2013).

    [30] M. Z. Alam, I. De Leon, R. W. Boyd. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 352, 795-797(2016).

    [31] R. W. Boyd. Nonlinear Optics(2020).

    [32] R. W. Boyd, Z. Shi, I. De Leon. The third-order nonlinear optical susceptibility of gold. Opt. Commun., 326, 74-79(2014).

    [33] T. S. Luk et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl. Phys. Lett., 106, 151103(2015).

    [34] A. Capretti et al. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photonics, 2, 1584-1591(2015).

    [35] J. Deng et al. Giant enhancement of second-order nonlinearity of epsilon-near- zero medium by a plasmonic metasurface. Nano Lett., 20, 5421-5427(2020).

    [36] Y. Yang et al. High-harmonic generation from an epsilon-near-zero material. Nat. Phys., 15, 1022-1026(2019).

    [37] W. Jia et al. Broadband terahertz wave generation from an epsilon-near-zero material. Light Sci. Appl., 10, 11(2021).

    [38] Y. Lu et al. Integrated terahertz generator-manipulators using epsilon-near-zero-hybrid nonlinear metasurfaces. Nano Lett., 21, 7699-7707(2021).

    [39] P. Guo et al. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photonics, 10, 267-273(2016).

    [40] Y. Yang et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics, 11, 390-395(2017).

    [41] F. Hu et al. High-contrast optical switching using an epsilon-near-zero material coupled to a Bragg microcavity. Opt. Express, 27, 26405-26414(2019).

    [42] J. Bohn et al. All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide. Nat. Commun., 12, 1017(2021).

    [43] Q. Guo et al. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv. Mater., 29, 1700754(2017).

    [44] J. Guo et al. Indium tin oxide nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber laser. Opt. Mater. Express, 7, 3494-3502(2017).

    [45] X. Jiang et al. Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 μm. Nanophotonics, 7, 1835-1843(2018).

    [46] K. Y. Lau et al. Tunable optical nonlinearity of indium tin oxide for optical switching in epsilon-near-zero region. Nanophotonics, 11, 4209-4219(2022).

    [47] M. Z. Alam et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photonics, 12, 79-83(2018).

    [48] X. Niu et al. Polarization-selected nonlinearity transition in gold dolmens coupled to an epsilon-near-zero material. Nanophotonics, 9, 4839-4851(2020).

    [49] L. Huang et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012).

    [50] E. Karimi et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl., 3, e167(2014).

    [51] V. Matsas et al. Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation. Electron. Lett., 28, 1391-1393(1992).

    [52] Y. Ding et al. Spatiotemporal mode-locking in lasers with large modal dispersion. Phys. Rev. Lett., 126, 093901(2021).

    [53] K. Liu, X. Xiao, C. Yang. Observation of transition between multimode Q-switching and spatiotemporal mode locking. Photonics Res., 9, 530-534(2021).

    [54] B. Fu et al. Passively Q-switched Yb-doped all-fiber laser based on Ag nanoplates as saturable absorber. Nanophotonics, 9, 3873-3880(2020).

    [55] H. Wang et al. Extended Drude model for intraband-transition-induced optical nonlinearity. Phys. Rev. Appl., 11, 064062(2019).

    [56] A. Chong et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 14, 350-354(2020).

    [57] C. Wei et al. Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 μm based on carbon nanotube. IEEE J. Sel. Top. Quantum Electron., 25, 1100206(2019).

    [58] K. Wang et al. Large optical nonlinearity of dielectric nanocavity-assisted mie resonances strongly coupled to an epsilon-near-zero mode. Nano Lett., 22, 702-709(2022).

    [59] U. Keller et al. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers. IEEE J. Sel. Top. Quantum Electron., 2, 435-453(1996).

    [60] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [61] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [62] M. Gu, X. Li, Y. Cao. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl., 3, e177(2014).

    [63] G. Vicidomini, P. Bianchini, A. Diaspro. STED super-resolved microscopy. Nat. Methods, 15, 173-182(2018).

    [64] D. D. Han et al. Light-mediated manufacture and manipulation of actuators. Adv. Mater., 28, 8328-8343(2016).

    [65] X. Liu et al. Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties. Appl. Phys. Lett., 105, 181117(2014).

    [66] M. D. Tocci et al. Thin-film nonlinear optical diode. Appl. Phys. Lett., 66, 2324-2326(1995).

    Wenhe Jia, Chenxin Gao, Yongmin Zhao, Liu Li, Shun Wen, Shuai Wang, Chengying Bao, Chunping Jiang, Changxi Yang, Yuanmu Yang. Intracavity spatiotemporal metasurfaces[J]. Advanced Photonics, 2023, 5(2): 026002
    Download Citation