• Advanced Photonics
  • Vol. 5, Issue 2, 026002 (2023)
Wenhe Jia1,†, Chenxin Gao1, Yongmin Zhao2, Liu Li1..., Shun Wen1, Shuai Wang1, Chengying Bao1,*, Chunping Jiang2,*, Changxi Yang1 and Yuanmu Yang1,*|Show fewer author(s)
Author Affiliations
  • 1Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China
  • 2Chinese Academy of Sciences, Suzhou Institute of Nano-Tech and Nano-Bionics, Key Laboratory of Nanodevices and Applications, Suzhou, China
  • show less
    DOI: 10.1117/1.AP.5.2.026002 Cite this Article Set citation alerts
    Wenhe Jia, Chenxin Gao, Yongmin Zhao, Liu Li, Shun Wen, Shuai Wang, Chengying Bao, Chunping Jiang, Changxi Yang, Yuanmu Yang, "Intracavity spatiotemporal metasurfaces," Adv. Photon. 5, 026002 (2023) Copy Citation Text show less
    References

    [1] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [2] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [3] K. Koshelev, Y. Kivshar. Dielectric resonant metaphotonics. ACS Photonics, 8, 102-112(2020).

    [4] J. Yang et al. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys., 85, 036101(2022).

    [5] X. Chen et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun., 3, 1198(2012).

    [6] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [7] X. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [8] L. Huang et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [9] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [10] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [11] Y. Yang et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett., 14, 1394-1399(2014).

    [12] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [13] H. Chung et al. E-band metasurface-based orbital angular momentum multiplexing and demultiplexing. Laser Photonics Rev., 16, 2100456(2022).

    [14] L. Chen et al. Spatiotemporal control of femtosecond pulses. CLEO: Appl. and Technol., JTh2P.2.

    [15] E. Maguid et al. Topologically controlled intracavity laser modes based on pancharatnam-berry phase. ACS Photonics, 5, 1817-1821(2018).

    [16] H. Sroor et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 14, 498-503(2020).

    [17] L. Gui et al. 60-nm-span wavelength-tunable vortex fiber laser with intracavity plasmon metasurfaces(2022).

    [18] A. Forbes. Structured light from lasers. Laser Photonics Rev., 13, 1900140(2019).

    [19] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [20] V. V. Zubyuk et al. Low-power absorption saturation in semiconductor metasurfaces. ACS Photonics, 6, 2797-2806(2019).

    [21] J. Wang et al. Saturable plasmonic metasurfaces for laser mode locking. Light Sci. Appl., 9, 50(2020).

    [22] X. Niu et al. Epsilon-near-zero photonics: a new platform for integrated devices. Adv. Opt. Mater., 6, 1701292(2018).

    [23] O. Reshef et al. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater., 4, 535-551(2019).

    [24] N. Kinsey et al. Near-zero-index materials for photonics. Nat. Rev. Mater., 4, 742-760(2019).

    [25] J. Wu et al. Epsilon-near-zero photonics: infinite potentials. Photonics Res., 9, 1616-1644(2021).

    [26] J. D. Caldwell et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics, 4, 44-68(2015).

    [27] F. Hu et al. Two-plasmon spontaneous emission from a nonlocal epsilon-near-zero material. Commun. Phys., 4, 84(2021).

    [28] X. Wen et al. Doubly enhanced second harmonic generation through structural and epsilon-near-zero resonances in TiN nanostructures. ACS Photonics, 5, 2087-2093(2018).

    [29] G. V. Naik, V. M. Shalaev, A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264-3294(2013).

    [30] M. Z. Alam, I. De Leon, R. W. Boyd. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 352, 795-797(2016).

    [31] R. W. Boyd. Nonlinear Optics(2020).

    [32] R. W. Boyd, Z. Shi, I. De Leon. The third-order nonlinear optical susceptibility of gold. Opt. Commun., 326, 74-79(2014).

    [33] T. S. Luk et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl. Phys. Lett., 106, 151103(2015).

    [34] A. Capretti et al. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photonics, 2, 1584-1591(2015).

    [35] J. Deng et al. Giant enhancement of second-order nonlinearity of epsilon-near- zero medium by a plasmonic metasurface. Nano Lett., 20, 5421-5427(2020).

    [36] Y. Yang et al. High-harmonic generation from an epsilon-near-zero material. Nat. Phys., 15, 1022-1026(2019).

    [37] W. Jia et al. Broadband terahertz wave generation from an epsilon-near-zero material. Light Sci. Appl., 10, 11(2021).

    [38] Y. Lu et al. Integrated terahertz generator-manipulators using epsilon-near-zero-hybrid nonlinear metasurfaces. Nano Lett., 21, 7699-7707(2021).

    [39] P. Guo et al. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photonics, 10, 267-273(2016).

    [40] Y. Yang et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics, 11, 390-395(2017).

    [41] F. Hu et al. High-contrast optical switching using an epsilon-near-zero material coupled to a Bragg microcavity. Opt. Express, 27, 26405-26414(2019).

    [42] J. Bohn et al. All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide. Nat. Commun., 12, 1017(2021).

    [43] Q. Guo et al. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv. Mater., 29, 1700754(2017).

    [44] J. Guo et al. Indium tin oxide nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber laser. Opt. Mater. Express, 7, 3494-3502(2017).

    [45] X. Jiang et al. Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 μm. Nanophotonics, 7, 1835-1843(2018).

    [46] K. Y. Lau et al. Tunable optical nonlinearity of indium tin oxide for optical switching in epsilon-near-zero region. Nanophotonics, 11, 4209-4219(2022).

    [47] M. Z. Alam et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photonics, 12, 79-83(2018).

    [48] X. Niu et al. Polarization-selected nonlinearity transition in gold dolmens coupled to an epsilon-near-zero material. Nanophotonics, 9, 4839-4851(2020).

    [49] L. Huang et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012).

    [50] E. Karimi et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl., 3, e167(2014).

    [51] V. Matsas et al. Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation. Electron. Lett., 28, 1391-1393(1992).

    [52] Y. Ding et al. Spatiotemporal mode-locking in lasers with large modal dispersion. Phys. Rev. Lett., 126, 093901(2021).

    [53] K. Liu, X. Xiao, C. Yang. Observation of transition between multimode Q-switching and spatiotemporal mode locking. Photonics Res., 9, 530-534(2021).

    [54] B. Fu et al. Passively Q-switched Yb-doped all-fiber laser based on Ag nanoplates as saturable absorber. Nanophotonics, 9, 3873-3880(2020).

    [55] H. Wang et al. Extended Drude model for intraband-transition-induced optical nonlinearity. Phys. Rev. Appl., 11, 064062(2019).

    [56] A. Chong et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 14, 350-354(2020).

    [57] C. Wei et al. Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 μm based on carbon nanotube. IEEE J. Sel. Top. Quantum Electron., 25, 1100206(2019).

    [58] K. Wang et al. Large optical nonlinearity of dielectric nanocavity-assisted mie resonances strongly coupled to an epsilon-near-zero mode. Nano Lett., 22, 702-709(2022).

    [59] U. Keller et al. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers. IEEE J. Sel. Top. Quantum Electron., 2, 435-453(1996).

    [60] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [61] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [62] M. Gu, X. Li, Y. Cao. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl., 3, e177(2014).

    [63] G. Vicidomini, P. Bianchini, A. Diaspro. STED super-resolved microscopy. Nat. Methods, 15, 173-182(2018).

    [64] D. D. Han et al. Light-mediated manufacture and manipulation of actuators. Adv. Mater., 28, 8328-8343(2016).

    [65] X. Liu et al. Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties. Appl. Phys. Lett., 105, 181117(2014).

    [66] M. D. Tocci et al. Thin-film nonlinear optical diode. Appl. Phys. Lett., 66, 2324-2326(1995).

    Wenhe Jia, Chenxin Gao, Yongmin Zhao, Liu Li, Shun Wen, Shuai Wang, Chengying Bao, Chunping Jiang, Changxi Yang, Yuanmu Yang, "Intracavity spatiotemporal metasurfaces," Adv. Photon. 5, 026002 (2023)
    Download Citation