• Infrared Technology
  • Vol. 42, Issue 2, 101 (2020)
Jianchuan1 ZHAO1、*, Runqi2 ZHANG2, Jie2 WANG2, Yu3 SHAO3, Yue4 SHEN4, and Chuanming LIU2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: Cite this Article
    ZHAO Jianchuan1, ZHANG Runqi2, WANG Jie2, SHAO Yu3, SHEN Yue4, LIU Chuanming. Research on Aerial Camera Imaging Technology[J]. Infrared Technology, 2020, 42(2): 101 Copy Citation Text show less
    References

    [4] Wyatt S H. Dual spectral band reconnaissance systems for multiple platforms[C]//Airborne Reconnaissance XXVI. International Society for Optics and Photonics, 2002, 4824: 36-47.

    [5] Ruck R C , Smith O J . KS-127A long range oblique reconnaissance camera for RF-4 aircraft[J]. Proceedings of SPIE, 1980, 242: 22-31.

    [6] Ruck R. Design Versatility Of The Prism Panoramic Camera: The KS-116 And KA-95 Cameras[C]//Airborne Reconnaissance V.International Society for Optics and Photonics, 1981, 309: 69-75.

    [8] Dyer G R. Airborne reconnaissance into the 21st century[C]//Airborne Reconnaissance XXII, 1998, 3431: 26-34.

    [9] Hull W, Frank W. The KA-102A Lorop camera[C]// Aerial Reconnaissance Systems: Pods/Aircraft I. International Society for Optics and Photonics, 1976, 79: 154-160.

    [10] Spiller R H. New uses for the Zeiss KS-153A camera system[C]//Airborne Reconnaissance XIX, 1995, 2555: 207-214.

    [11] Petrie G, Walker A S. Airborne digital imaging technology: a new overview[J]. The Photogrammetric Record, 2007, 119(22): 23.

    [12] Ostman Brad. TDI CCDs are still the sensors of choice for demanding applications[J/OL]. Laser Focus World World Magazine, 2010 [2018-12-18].https://www.laserfocusworld.com/detectors-imaging/article/16567663/tdi-ccds-are-still-the-sensors-of-choice-for-demanding-applications.

    [15] Chamberlain S G, Washkurak W D. High speed, low noise, fine resolution TDI CCD imagers[C]//Proc. of SPIE, 1990, 1242: 1-12.

    [17] Shimer S E, Hamm L E, Biesterfeld B L, et al. Comparison of forward oblique scanning sensor to infrared line scanner for collection of reconnaissance imagery data[C]//Acquisition, Tracking, and Pointing III,1989, 1111: 142-159.

    [19] National Geospatial Intelligence Agency. Pushbroom/Whiskbroom Sensor Model, Metadata Profile Supporting Precise Geopositioning[R/OL]. US: NGA.SIG.0003-1.0, 2009[2018-12-18]. http://gwg. nga. mil/documents/csmwg/PUSHBROOM_WHI-SKBROOM_PAPER_Ver sion_1_0_GOLD_21JUL09.doc.

    [20] Lewis G R. Image stabilization techniques for long range reconnaissance camera[C]//Proceedings of SPIE, 1980, 242: 153-158.

    [21] Petrie G. Airborne pushbroom line scanners: an alternative to digital frame scanners[J]. Geo Informatics, 2005, 8(1): 50-57.

    [22] Reulke R, Becker S, Haala N, et al. Determination and improvement of spatial resolution of the CCD-line-scanner system ADS40[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 81-90.

    [23] TU Xinru, XU Miaozhong. The geometric calibration of airborne three-line-scanner ADS40[J]. Acta Geodaetica Et Cartographica Sinica,2011, 40(1): 78-83.

    [24] Riehl Jr K. RAPTOR (DB-110) reconnaissance system: in operation[C]//Airborne Reconnaissance XXVI, 2002, 4824: 1-12.

    [25] Lange D , Abrams W, Iyengar M A , et al. Goodrich DB-110 system:multiband operation today and tomorrow[C]//Proceedings of SPIE, 2003,5109: 22-36.

    [27] Iyengar M, Lange D. The Goodrich 3rd generation DB-110 system:operational on tactical and unmanned aircraft[C]//Airborne Intelligence,Surveillance, Reconnaissance (ISR) Systems and Applications III, 2006,6209: 620909.

    [28] Riehl K, Maver L A, Sementelli R G. The Raytheon DB-110 Sensor:Four Cameras in One Package[R/OL]. RAYTHEON SYSTEMS CO.1999[2018-12-18]. https://apps.dtic.mil/dtic/tr/ful ltext /u2/a390184.pdf.

    [29] Lareau A G. EO framing: technology overview and demonstration results[C]//Optical Engineering Midwest'95, 1995, 2622: 589-604.

    [33] Sementelli R G. EO/IR dual-band reconnaissance system DB-110[C]//Airborne Reconnaissance XIX, 1995, 2555: 222-232.

    [34] Petrushevsky V, Tsur D. Condor TAC: EO/IR tactical aerial reconnaissance photography system[C]//Airborne Intelligence,Surveillance, Reconnaissance (ISR) Systems and Applications IX, 2012,8360: 836003.

    [35] Lareau A G. Flight demonstration of the CA-261 step frame camera[C]//Airborne Reconnaissance XXI, 1997, 3128: 17-29.

    [36] Lavigne V, Ricard B. Step-stare image gathering for high-resolution targeting[R]. In Advanced Sensory Payloads for UAV, 2005, 17: 1-14.

    [37] Remondino F, Toschi I, Gerke M. Oblique aerial images: potentialities,applications and best practices[R/OL]. 2016 [2018-12-18]. http://www.itc.nl/ library/ papers_2016/pres/nex_obl_ppt.pdf.

    [38] Rupnik E, Nex F, Remondino F. Oblique multi-camera systems-orientation and dense matching issues[J]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, 40(3): 107.

    [39] Uhl B. The new light weight, high performance reconnaissance camera KRb 8/24 F[C]//Airborne Reconnaissance XIII, 1990, 1156: 49-58.

    [40] Lemmens M. Digital oblique aerial cameras(1): a survey of features and systems[J]. GIM International, 2014, 28(4): 20-25.

    [41] Reading O. The nine lens air camera of the US coast and geodetic survey[J]. Photogrammetric Engineering, 1938, 4(3): 184-192.

    [42] Leachtenauer J C, Malila W, Irvine J, et al. General image-quality equation: GIQE[J]. Applied Optics, 1997, 36(32): 8322-8328.

    [43] Livingston R G. A history of military mapping camera development (Aerial cameras for military mapping developed with dimensional stability in camera-lens-film combination)[J]. Photogrammetric Engineering, 1964, 30: 97-110.

    [44] Petrie G. Systematic oblique aerial photography using multiple digital cameras[J]. Photogrammetric Engineering & Remote Sensing, 2009,75(2): 102-107.

    [45] OPTISCH-ELEKTRONISCHE UBERWACHUNG SSTATIONEN OSDCAM4060 und 3660[Z/OL]. PO KSI, [2018-12-18].http://www.poksi.ru/files/ OSDCAM_DE.pdf.

    [46] John Arvesen. Airborne High-resolution, Panoramic Camera Systems[R/OL]. Cirrus Digital Systems, 2016[2018-12-18].http://iprc.soest.hawaii.edu/NASA_WS_MD2016/pdf/Arvesen-2016.pdf.

    [47] Remondino F, Gerke M. Oblique Aerial Imagery: a Review[C]//Proceedings of Photogrammetric Week'15, 2015, 15: 75-83.

    [48] Hinz A, D?rstel C, Heier H. DMC-The digital sensor technology of Z/I-Imaging[C]// Proceedings of Photogrammetric Week’01. 2001, 1:93-103.

    [49] Aerial Camera Corp. 9-lens aerial mapping camera made by the Fairchild Aerial Camera Corp. for the U.S. Coast & Geodetic Survey[Z/OL]. (2015)[2018-12-18]. http://hdl.loc.gov/loc.pnp/hec.41180.

    [50] Neumann, K. The Z/I DMC II – “Imaging Revolution” [C]//Proceedings of Photogrammetric Week’11, 2011, 11: 97-101.

    [51] Gruber M, Ponticelli M, Ladst?dter R, et al. UltraCam Eagle, details and insight[J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2012, 39(B1): 15-19.

    ZHAO Jianchuan1, ZHANG Runqi2, WANG Jie2, SHAO Yu3, SHEN Yue4, LIU Chuanming. Research on Aerial Camera Imaging Technology[J]. Infrared Technology, 2020, 42(2): 101
    Download Citation