• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20210671 (2022)
Qin Chen, Xianghong Nan, Wenyue Liang, Qilin Zheng, Zhiwei Sun, and Long Wen
Author Affiliations
  • Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
  • show less
    DOI: 10.3788/IRLA20210671 Cite this Article
    Qin Chen, Xianghong Nan, Wenyue Liang, Qilin Zheng, Zhiwei Sun, Long Wen. Research progress of on-chip integrated optical sensing technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210671 Copy Citation Text show less
    References

    [1] S M Borisov, O S Wolfbeis. Optical biosensors. Chemical Reviews, 108, 423-461(2008).

    [2] V Singh, J J Hu, A M Agarwal, et al. Integrated optical sensors. IEEE Photonics Journal, 4, 638-641(2012).

    [3] X Yan, H X Li, X G Su. Review of optical sensors for pesticides. Trac-Trends in Analytical Chemistry, 103, 1-20(2018).

    [4] Q Wang, W M Zhao. Optical methods of antibiotic residues detections: A comprehensive review. Sensors and Actuators B-Chemical, 269, 238-256(2018).

    [5] A Salek-Maghsoudi, F Vakhshiteh, R Torabi, et al. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosensors & Bioelectronics, 99, 122-135(2018).

    [6] N Khansili, G Rattu, P M Krishna. Label-free optical biosensors for food and biological sensor applications. Sensors and Actuators B-Chemical, 265, 35-49(2018).

    [7] M K Gao, Y H Gao, M S Tian, et al. Research on the application of optical sensor in quality and safety of agricultural products. Chinese Journal of Analysis Laboratory, 39, 1225-1232(2020).

    [8] A Tariq, J Baydoun, C Remy, et al. Fluorescent molecular probe based optical fiber sensor dedicated to pH measurement of concrete. Sensors and Actuators B-Chemical, 327, 128906(2021).

    [9] E A Simsir, S Erdemir, M Tabakci, et al. Nano-scale selective and sensitive optical sensor for metronidazole based on fluorescence quenching: 1H-Phenanthro[9, 10-d]imidazolyl-calix[4]arene fluorescent probe. Analytica Chimica Acta, 1162, 338494(2021).

    [10] D Lin, Z C Zheng, Q W Wang, et al. Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing. Optics Express, 24, 24750-24759(2016).

    [11] V Shvalya, G Filipic, J Zavasnik, et al. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Applied Physics Reviews, 7, 031307(2020).

    [12] T Adao, J Hruska, L Padua, et al. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9, 1110(2017).

    [13] A K Mahlein, M T Kuska, J Behmann, et al. Hyperspectral sensors and imaging technologies in phytopathology: State of the art. Annual Review of Phytopathology, 56, 535-558(2018).

    [14] O Tokel, F Inci, U Demirci. Advances in plasmonic technologies for point of care applications. Chemical Reviews, 114, 5728-5752(2014).

    [15] G A Lopez, M C Estevez, M Soler, et al. Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration. Nanophotonics, 6, 123-136(2017).

    [16] Z X Geng, X Zhang, Z Y Fan, et al. Recent progress in optical biosensors based on smartphone platforms. Sensors, 17, 2449(2017).

    [17] Y Liang, T Xu. Integrated miniature plasmonic nanostructure sensors. Physics, 48, 22-28(2019).

    [18] W P Wang, L Jin. Research progress of on-chip spectrometer based on the silicon photonics platform. Spectroscopy and Spectral Analysis, 40, 333-342(2020).

    [19] Z Y Yang, T Albrow-Owen, W W Cai, et al. Miniaturization of optical spectrometers. Science, 371, eabe0722(2021).

    [20] L Zhang, J Pan, Z Zhang, et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electronic Advances, 3, 190022(2020).

    [21] Y Zheng, Z F Wu, P P Shum, et al. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electronic Advances, 1, 180085(2018).

    [22] Y F Hao, Z Y Feng, C Han, et al. Application of high sensitive detection sensor chip in detection of brain glioma disease. Infrared and Laser Engineering, 50, 20210279(2021).

    [23] D Hasan, C Lee. Hybrid metamaterial absorber platform for sensing of CO2 gas at mid-IR. Advanced Science, 5, 1700581(2018).

    [24] D Visser, B D Choudhury, I Krasovska, et al. Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays. Optics Express, 25, 12171-12181(2017).

    [25] H Im, J N Sutherland, J A Maynard, et al. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. Analytical Chemistry, 84, 1941-1947(2012).

    [26] D K Armani, T J Kippenberg, S M Spillane, et al. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [27] S Rosenblum, Y Lovsky, L Arazi, et al. Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators. Nature Communications, 6, 6788(2015).

    [28] L Y Hong, H Li, H Yang, et al. Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS. IEEE Journal of Solid-State Circuits, 52, 2388-2406(2017).

    [29] J G Zhu, S K Ozdemir, Y F Xiao, et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nature Photonics, 4, 46-49(2010).

    [30] T N Jin, H Y G Lin, P T Lin. Monolithically integrated Si-on-AIN mid-infrared photonic chips for real-time and label-free chemical sensing. ACS Applied Materials & Interfaces, 9, 42905-42911(2017).

    [31] L Rodriguez-Saona, D P Aykas, K R Borba, et al. Miniaturization of optical sensors and their potential for high-throughput screening of foods. Current Opinion in Food Science, 31, 136-150(2020).

    [32] Johann S, Mansurova M, Kohlhoff H, et al. Wireless mobile sens device f insitu measurements with multiple fluescent senss [C]IEEE Senss Conference, 2018: 10671070.

    [33] J L Zhang, I Khan, Q W Zhang, et al. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. Biosensors & Bioelectronics, 99, 312-317(2018).

    [34] X Y Xu, W J Chen, G M Zhao, et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping. Light-Science & Applications, 7, 62(2018).

    [35] A Tittl, A Leitis, M K Liu, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360, 1105(2018).

    [36] M C Estevez, M Alvarez, L M Lechuga. Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6, 463-487(2012).

    [37] H Wang, Y L Zhang, W Wang, et al. On-chip laser processing for the development of multifunctional microfluidic chips. Laser & Photonics Reviews, 11, 1600116(2017).

    [38] O Yavas, M Svedendahl, P Dobosz, et al. On-a-chip biosensing based on all-dielectric nanoresonators. Nano Letters, 17, 4421-4426(2017).

    [39] C Brown, A Goncharov, Z S Ballard, et al. Neural network-based on-chip spectroscopy using a scalable plasmonic encoder. ACS Nano, 15, 6305-6315(2021).

    [40] C Garcia-Meca, S Lechago, A Brimont, et al. On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices. Light-Science & Applications, 6, e17053(2017).

    [41] P T Lin, S W Kwok, H Y G Lin, et al. Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing. Nano Letters, 14, 231-238(2014).

    [42] S S Acimovic, H Sipova, G Emilsson, et al. Superior LSPR substrates based on electromagnetic decoupling for on-a-chip high-throughput label-free biosensing. Light-Science & Applications, 6, e17042(2017).

    [43] C H Lu, T S Shih, P C Shih, et al. Finger-powered agglutination lab chip with CMOS image sensing for rapid point-of-care diagnosis applications. Lab on a Chip, 20, 424-433(2020).

    [44] Y Zhang, G Wang, L Yang, et al. Recent advances in gold nanostructures based biosensing and bioimaging. Coordination Chemistry Reviews, 370, 1-21(2018).

    [45] A P Blanchard-Dionne, M Meunier. Sensing with periodic nanohole arrays. Advances in Optics and Photonics, 9, 891-940(2017).

    [46] A G Brolo. Plasmonics for future biosensors. Nature Photonics, 6, 709-713(2012).

    [47] J N Anker, W P Hall, O Lyandres, et al. Biosensing with plasmonic nanosensors. Nature Materials, 7, 442-453(2008).

    [48] G Zanchetta, R Lanfranco, F Giavazzi, et al. Emerging applications of label-free optical biosensors. Nanophotonics, 6, 627-645(2017).

    [49] Y Xu, J Bian, W H Zhang. Principles and processes of nanometric localized-surface-plasmonic optical sensors. Laser & Optoelectronics Progress, 56, 202407(2019).

    [50] Y M Ma, B W Dong, C K Lee. Progress of infrared guided-wave nanophotonic sensors and devices. Nano Convergence, 7, 12(2020).

    [51] J F Song, X S Luo, J S Kee, et al. Silicon-based optoelectronic integrated circuit for label-free bio/chemical sensor. Optics Express, 21, 17931-17940(2013).

    [52] M Dandin, P Abshire, E Smela. Optical filtering technologies for integrated fluorescence sensors. Lab on a Chip, 7, 955-977(2007).

    [53] Q Chen, L Liang, Q L Zheng, et al. On-chip readout plasmonic mid-IR gas sensor. Opto-Electronic Advances, 3, 07190040(2020).

    [54] L Wen, L Liang, X G Yang, et al. Multiband and ultrahigh figure-of-merit nanoplasmonic sensing with direct electrica readout in Au-Si nanojunctions. ACS Nano, 13, 6963-6972(2019).

    [55] B Schwarz, P Reininger, D Ristanic, et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nature Communications, 5, 4085(2014).

    [56] W Du, T Wang, H S Chu, et al. Highly efficient on-chip direct electronic-plasmonic transducers. Nature Photonics, 11, 623-627(2017).

    [57] R Singh, P Su, L Kimerling, et al. Towards on-chip mid infrared photonic aerosol spectroscopy. Applied Physics Letters, 113, 231107(2018).

    [58] A Shakoor, B C Cheah, D Hao, et al. Plasmonic sensor monolithically integrated with a CMOS photodiode. ACS Photonics, 3, 1926-1933(2016).

    [59] Y Zhao, J Zhao, Q Zhao. Review of no-core optical fiber sensor and applications. Sensors and Actuators a-Physical, 313, 112160(2020).

    [60] C Caucheteur, T Guo, F Liu, et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nature Communications, 7, 13371(2016).

    [61] V Mittal, G Z Mashanovich, J S Wilkinson. Perspective on thin film waveguides for on-chip mid-infrared spectroscopy of liquid biochemical analytes. Analytical Chemistry, 92, 10891-10901(2020).

    [62] O Krupin, H Asiri, C Wang, et al. Biosensing using straight long-range surface plasmon waveguides. Optics Express, 21, 698-709(2013).

    [63] L Tombez, E J Zhang, J S Orcutt, et al. Methane absorption spectroscopy on a silicon photonic chip. Optica, 4, 1322-1325(2017).

    [64] Z Han, V Singh, D Kita, et al. On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors. Applied Physics Letters, 109, 071111(2016).

    [65] P Su, Z Han, D Kita, et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector. Applied Physics Letters, 114, 051103(2019).

    [66] Y M Ma, Y H Chang, B W Dong, et al. Heterogeneously integrated graphene/silicon/halide waveguide photodetectors toward chip-scale zero-bias long-wave infrared spectroscopic sensing. ACS Nano, 15, 10084-10094(2021).

    [67] H Lin, C S Kim, L Li, et al. Monolithic chalcogenide glass waveguide integrated interband cascaded laser. Optical Materials Express, 11, 2869-2876(2021).

    [68] L Li, H T Lin, Y Z Huang, et al. High-performance flexible waveguide-integrated photodetectors. Optica, 5, 44-51(2018).

    [69] H L Zhao, B Baumgartner, A Raza, et al. Multiplex volatile organic compound Raman sensing with nanophotonic slot waveguides functionalized with a mesoporous enrichment layer. Optics Letters, 45, 447-450(2020).

    [70] M Vlk, A Datta, S Alberti, et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light-Science & Applications, 10, 26(2021).

    [71] Q Y Du, Z Q Luo, H K Zhong, et al. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photonics Research, 6, 506-510(2018).

    [72] K M Yoo, J Midkiff, A Rostamian, et al. InGaAs membrane waveguide: A promising platform for monolithic integrated mid-infrared optical gas sensor. ACS Sensors, 5, 861-869(2020).

    [73] Y B Wu, Z B Qu, A Osman, et al. Nanometallic antenna-assisted amorphous silicon waveguide integrated bolometer for mid-infrared. Optics Letters, 46, 677-680(2021).

    [74] C Consani, C Ranacher, A Tortschanoff, et al. Mid-infrared photonic gas sensing using a silicon waveguide and an integrated emitter. Sensors and Actuators B-Chemical, 274, 60-65(2018).

    [75] W J Chen, S K Ozdemir, G M Zhao, et al. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-198(2017).

    [76] S Liu, W Z Sun, Y J Wang, et al. End-fire injection of light into high-Q silicon microdisks. Optica, 5, 612-616(2018).

    [77] Y Xu, P Bai, X D Zhou, et al. Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth. Advanced Optical Materials, 7, 1801433(2019).

    [78] L Liang, L Wen, C P Jiang, et al. Research progress of terahertz sensor based on artificial microstructure. Infrared and Laser Engineering, 48, 0203001(2019).

    [79] L Liang, X Hu, L Wen, et al. Unity integration of grating slot waveguide and microfluid for terahertz sensing. Laser & Photonics Reviews, 12, 1800078(2018).

    [80] J Homola. Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108, 462-493(2008).

    [81] K Zang, D K Zhang, Y J Huo, et al. Microring bio-chemical sensor with integrated low dark current Ge photodetector. Applied Physics Letters, 106, 101111(2015).

    [82] J F Song, X S Luo, X G Tu, et al. Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors. Optics Express, 20, 4189-4197(2012).

    [83] R J Wang, S Sprengel, A Vasiliev, et al. Widely tunable 2.3 μm III-V-on-silicon vernier lasers for broadband spectroscopic sensing. Photonics Research, 6, 858-866(2018).

    [84] D A Cohen, J A Nolde, A T Pedretti, et al. Sensitivity and scattering in a monolithic heterodyned laser biochemical sensor. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1124-1131(2003).

    [85] G Crosnier, D Sanchez, S Bouchoule, et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nature Photonics, 11, 297-301(2017).

    [86] Y Wang, S M Chen, Y Yu, et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 5, 528-533(2018).

    [87] H S Rong, R Jones, A S Liu, et al. A continuous-wave Raman silicon laser. Nature, 433, 725-728(2005).

    [88] A E Cetin, A F Coskun, B C Galarreta, et al. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light-Science & Applications, 3, e122(2014).

    [89] J W Wang, M M Sanchez, Y Yin, et al. Silicon-based integrated label-free optofluidic biosensors: Latest advances and roadmap. Advanced Materials Technologies, 5, 1901138(2020).

    [90] S C B Gopinath. Biosensing applications of surface plasmon resonance-based Biacore technology. Sensors and Actuators B-Chemical, 150, 722-733(2010).

    [91] Y Dattner, O Yadid-Pecht. Low light CMOS contact imager with an integrated poly-acrylic emission filter for fluorescence detection. Sensors, 10, 5014-5027(2010).

    [92] T Tokuda, H Matsuoka, N Tachikawa, et al. CMOS sensor-based miniaturised in-line dual-functional optical analyser for high-speed, in situ chirality monitoring. Sensors and Actuators B-Chemical, 176, 1032-1037(2013).

    [93] Bollschweiler L, English A, Baker R J, et al. Chipscale nanophotonic chemical biological senss using CMOS process [C]52nd IEEE International west Symposium on Circuits Systems, IEEE, 2009.

    [94] Koppa S, Joo Y J, Venkataramasubramani M, et al. Nanoscale biosens chip [C]53rd west Symposium on Circuits Systems (MWSCAS 2010), IEEE, 2010.

    [95] F Mazzotta, G L Wang, C Hagglund, et al. Nanoplasmonic biosensing with on-chip electrical detection. Biosensors & Bioelectronics, 26, 1131-1136(2010).

    [96] B Turker, H Guner, S Ayas, et al. Grating coupler integrated photodiodes for plasmon resonance based sensing. Lab on a Chip, 11, 282-287(2011).

    [97] Q Chen, D Chitnis, K Walls, et al. CMOS photodetectors integrated with plasmonic color filters. IEEE Photonics Technology Letters, 24, 197-199(2012).

    [98] Q Chen, X Hu, L Wen, et al. Nanophotonic image sensors. Small, 12, 4922-4935(2016).

    [99] M Manley. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chemical Society Reviews, 43, 8200-8214(2014).

    [100] Augel L, Fischer I A, Dunbar L A, et al. Plasmonic nanohole arrays on SiGe heterostructures: An approach f integrated biosenss [C]SPIE, 2015, 9724: 97240M.

    [101] Augel L, Bechler S, Kner R, et al. An integrated plasmonic refractive index sens: Al nanohole arrays on Ge PIN photodiodes [C]IEEE International Electron Devices Meeting (IEDM), 2017: 896897.

    [102] L Augel, Y Kawaguchi, S Bechler, et al. Integrated collinear refractive index sensor with Ge PIN photodiodes. ACS Photonics, 5, 4586-4593(2018).

    [103] S T Seiler, I S Rich, N C Lindquist. Direct spectral imaging of plasmonic nanohole arrays for real-time sensing. Nanotechnology, 27, 184001(2016).

    [104] L Blockstein, O Yadid-Pecht. Lensless miniature portable fluorometer for measurement of chlorophyll and CDOM in water using fluorescence contact imaging. IEEE Photonics Journal, 6, 6600716(2014).

    [105] Y Maruyama, K Sawada, H Takao, et al. A novel filterless fluorescence detection sensor for DNA analysis. IEEE Transactions on Electron Devices, 53, 553-558(2006).

    [106] H Nakazawa, M Ishida, K Sawada. Multimodal bio-image sensor for real-time proton and fluorescence imaging. Sensors and Actuators B-Chemical, 180, 14-20(2013).

    [107] F Raissi, S Mirzakuchaki, H M Jalili, et al. Room-temperature gas-sensing ability of PtSi/porous Si Schottky junctions. Ieee Sensors Journal, 6, 146-150(2006).

    [108] L Augel, F Berkmann, D Latta, et al. Optofluidic sensor system with Ge PIN photodetector for CMOS-compatible sensing. Microfluidics and Nanofluidics, 21, 169(2017).

    [109] M Bora, K Celebi, J Zuniga, et al. Near field detector for integrated surface plasmon resonance biosensor applications. Optics Express, 17, 329-336(2009).

    [110] B Park, S H Yun, C Y Cho, et al. Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors. Light-Science & Applications, 3, e222(2014).

    [111] X Hu, G Q Xu, L Wen, et al. Metamaterial absorber integrated microfluidic terahertz sensors. Laser & Photonics Reviews, 10, 962-969(2016).

    [112] L Liang, Q L Zheng, L Wen, et al. Miniaturized spectroscopy with tunable and sensitive plasmonic structures. Optics Letters, 46, 4264-4267(2021).

    [113] L Guyot, A P Blanchard-Dionne, S Patskovsky, et al. Integrated silicon-based nanoplasmonic sensor. Optics Express, 19, 9962-9967(2011).

    [114] M Alavirad, S S Mousavi, L Roy, et al. Schottky-contact plasmonic dipole rectenna concept for biosensing. Optics Express, 21, 4328-4347(2013).

    [115] W J Chen, T Kan, Y Ajiki, et al. NIR spectrometer using a Schottky photodetector enhanced by grating-based SPR. Optics Express, 24, 25797-25804(2016).

    [116] Y Ajiki, T Kan, K Matsumoto, et al. Electrically detectable surface plasmon resonance sensor by combining a gold grating and a silicon photodiode. Applied Physics Express, 11, 022001(2018).

    [117] T Tsukagoshi, Y Kuroda, K Noda, et al. Compact surface plasmon resonance system with Au/Si Schottky barrier. Sensors, 18, 399(2018).

    [118] Y Saito, Y Yamamoto, T Kan, et al. Electrical detection SPR sensor with grating coupled backside illumination. Optics Express, 27, 17763-17770(2019).

    [119] M Oshita, H Takahashi, Y Ajiki, et al. Reconfigurable surface plasmon resonance photodetector with a MEMS deformable cantilever. ACS Photonics, 7, 673-679(2020).

    [120] D Sammito, Salvador D De, P Zilio, et al. Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors. Nanoscale, 6, 1390-1397(2014).

    [121] H S Kojori, Y W Ji, Y Paik, et al. Monitoring interfacial lectin binding with nanomolar sensitivity using a plasmon field effect transistor. Nanoscale, 8, 17357-17364(2016).

    [122] X C Tan, H Zhang, J Y Li, et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nature Communications, 11, 5245(2020).

    [123] T D Dao, S Ishii, A T Doan, et al. An on-chip quad-wavelength pyroelectric sensor for spectroscopic infrared sensing. Advanced Science, 6, 1900579(2019).

    [124] P Wang, A V Krasavin, M E Nasir, et al. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nature Nanotechnology, 13, 159-164(2018).

    [125] M Ciappesoni, S Cho, J Tian, et al. Computational study for optimization of a plasmon FET as a molecular biosensor. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV, 10506(2018).

    [126] Tan X C, Li J Y, Yang A, et al. Narrowb plasmonic metamaterial absber integrated pyroelectric detects towards infrared gas sensing [C]Conference on Lasers ElectroOptics (CLEO), 2018: FF2F. 4.

    [127] P Wang, M E Nasir, A V Krasavin, et al. Optoelectronic synapses based on hot-electron-induced chemical processes. Nano Letters, 20, 1536-1541(2020).

    [128] H Y Song, W Y Zhang, H F Li, et al. Review of compact computational spectral information acquisition systems. Frontiers of Information Technology & Electronic Engineering, 21, 1119-1133(2020).

    [129] Q L Zheng, L Wen, Q Chen. Research progress of computational microspectrometer based on speckle inspection. Opto-Electronic Engineering, 48, 200183(2021).

    CLP Journals

    [1] Lipeng Xia, Yuheng Liu, Peiji Zhou, Yi Zou. Advances in mid-infrared integrated photonic sensing system (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220104

    Qin Chen, Xianghong Nan, Wenyue Liang, Qilin Zheng, Zhiwei Sun, Long Wen. Research progress of on-chip integrated optical sensing technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210671
    Download Citation