• Laser & Optoelectronics Progress
  • Vol. 54, Issue 6, 63001 (2017)
Xu Dong1、2, Wu Tao1、2, He Xingdao1、2, and Fang Hui1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.063001 Cite this Article Set citation alerts
    Xu Dong, Wu Tao, He Xingdao, Fang Hui. Measurement of Trace Moisture Based on Integrated Cavity at 1392 nm with High Sensitivity[J]. Laser & Optoelectronics Progress, 2017, 54(6): 63001 Copy Citation Text show less
    References

    [1] Funke H H, Grissom B L, McGrew C E, et al. Techniques for the measurement of trace moisture in high-purity electronic specialty gases[J]. Review of Scientific Instruments, 2003, 74(9): 3909-3933.

    [2] Hashiguchi K, Lisak D, Cygan A, et al. Wavelength-meter controlled cavity ring-down spectroscopy: high-sensitivity detection of trace moisture in N2 at sub-ppb levels[J]. Sensors and Actuators A: Physical, 2016, 241: 152-160.

    [3] Abe H, Kitano H, Matsumoto N, et al. Uncertainty analysis for trace-moisture standard realized using a magnetic suspension balance/diffusion-tube humidity generator developed at NMIJ[J]. Metrologia, 2015, 52(6): 731-740.

    [4] Islam T, Khan A U, Akhtar J, et al. A digital hygrometer for trace moisture measurement[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5599-5605.

    [5] Chen B, Kang P, Li J, et al. Quantitative moisture measurement with a cavity ring-down spectrometer using telecom diode Lasers[J]. Chinese Journal of Chemical Physics, 2015, 28(1): 6-10.

    [6] Abe H, Lisak D, Cygan A,et al. Note: reliable, robust measurement system for trace moisture in gas at parts-per-trillion levels using cavity ring-down spectroscopy[J]. Review of Scientific Instruments, 2015, 86(10): 106110.

    [7] Crosson E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J]. Applied Physics B, 2008, 92(3): 403-408.

    [8] Peltola O, Hensen A, Helfter C, et al. Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment[J]. Biogeosciences Discussions, 2014, 11(1): 797-852.

    [9] Gao Guangzhen, Cai Tingdong. CO concentration measurement using multi-mode laser diode absorption spectroscopy near 1570 nm[J]. Acta Optica Sinica, 2016, 36(5): 0530002.

    [10] Li Mingxing, Liu Jianguo, Kan Ruifeng, et al. Design of real-time measurement of atmospheric CO and CH4 based on tunable diode laser spectroscopy system[J]. Acta Optica Sinica, 2015, 35(4): 0430001.

    [11] Yao Lu, Liu Wenqing, Liu Jianguo, et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese J Lasers, 2015, 42(2): 0215003.

    [12] Liu Lifu, Zhang Han, Wen Zuole, et al. Application of TDLAS technique to HCl online monitoring in waste incineration[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110101.

    [13] Berman E S F, Fladeland M, Liem J, et al. Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle[J]. Sensors and Actuators B: Chemical, 2012, 169: 128-135.

    [14] Tian C, Wang L, Novick K A. Water vaporδ2H, δ18O and δ17O measurements using an off-axis integrated cavity output spectrometer-sensitivity to water vapor concentration, delta value and averaging-time[J]. Rapid Communications in Mass Spectrometry, 2016, 30(19): 2077-2086.

    [15] Baer D S, Paul J B, Gupta M, et al. Sensitive absorption measurements in the near-infrared region using off-axis integrated cavity output spectroscopy[J]. Applied Physics B, 2002, 75(2): 261-265.

    [16] van Helden J H, Lang N, Macherius U, et al. Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser[J]. Applied Physics Letters, 2013, 103(13): 131114.

    [17] Centeno R, Mandon J, Cristescu S M, et al. External cavity diode laser-based detection of trace gases with NICE-OHMS using current modulation[J]. Optics Express, 2015, 23(5): 6277-6282.

    [18] Foltynowicz A, Schmidt F M, Ma W, et al. Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential[J]. Applied Physics B, 2008, 92(3): 313-326.

    [19] Zhao WeiXiong, Gao Xiaoming, Zhang Weijun, et al. High-sensitivity off-axis integrated cavity output spectroscopy[J]. Acta Optica Sinica, 2006, 26(8): 1260-1264.

    [20] Triki M, Cermak P, Mejean G, et al. Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis[J]. Applied Physics B, 2008, 91(1): 195-201.

    [21] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50.

    [22] Wojtas J, Mikolajczyk J, Bielecki Z. Aspects of the application of cavity enhanced spectroscopy to nitrogen oxides detection[J]. Sensors, 2013, 13(6): 7570-7598.

    [23] Linnerud I, Kaspersen P, Jaeger T. Gas monitoring in the process industry using diode laser spectroscopy[J]. Applied Physics B: Lasers and Optics, 1998, 67(3): 297-305.

    [24] Li J S, Chen W, Fischer H. Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry[J]. Applied Spectroscopy Reviews, 2013, 48(7): 523-559.

    [25] Hodgkinson J, Tatam R P. Optical gas sensing: a review[J]. Measurement Science and Technology, 2012, 24(1): 012004.

    [26] Rapson T D, Dacres H. Analytical techniques for measuring nitrous oxide[J]. TrAC Trends in Analytical Chemistry, 2014, 54: 65-74.

    [27] Sneep M, Ubachs W. Direct measurement of the Rayleigh scattering cross section in various gases[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 92(3): 293-310.

    [28] Bakhirkin Y A, Kosterev A A, Curl R F, et al. Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy[J]. Applied Physics B, 2006, 82(1): 149-154.

    Xu Dong, Wu Tao, He Xingdao, Fang Hui. Measurement of Trace Moisture Based on Integrated Cavity at 1392 nm with High Sensitivity[J]. Laser & Optoelectronics Progress, 2017, 54(6): 63001
    Download Citation