• Journal of Semiconductors
  • Vol. 42, Issue 10, 101603 (2021)
Chuan Li1, Pei Li1, Shuo Yang1, and Chunyi Zhi1、2
Author Affiliations
  • 1Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
  • 2Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong 999077, China
  • show less
    DOI: 10.1088/1674-4926/42/10/101603 Cite this Article
    Chuan Li, Pei Li, Shuo Yang, Chunyi Zhi. Recently advances in flexible zinc ion batteries[J]. Journal of Semiconductors, 2021, 42(10): 101603 Copy Citation Text show less
    References

    [1] Y C Cai, J Shen, C W Yang et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci Adv, 6, eabb5367(2020).

    [2] Z Wang, D M Fu, D Z Xie et al. Magnetic helical hydrogel motor for directing T cell chemotaxis. Adv Funct Mater, 31, 2101648(2021).

    [3] R D Rodriguez, S Shchadenko, G Murastov et al. Ultra-robust flexible electronics by laser-driven polymer-nanomaterials integration. Adv Funct Mater, 31, 2008818(2021).

    [4] K Wu, J H Huang, J Yi et al. Recent advances in polymer electrolytes for zinc ion batteries: Mechanisms, properties, and perspectives. Adv Energy Mater, 10, 1903977(2020).

    [5] P Yu, Y X Zeng, H Z Zhang et al. Flexible Zn-ion batteries: Recent progresses and challenges. Small, 15, 1804760(2019).

    [6] Q Yang, Y K Wang, X L Li et al. Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ Mater, 1, 183(2018).

    [7] Z S Song, J Ding, B Liu et al. A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier. Adv Mater, 32, 1908127(2020).

    [8] F N Mo, Q Li, G J Liang et al. A self-healing crease-free supramolecular all-polymer supercapacitor. Adv Sci, 8, 2100072(2021).

    [9] D H Wang, J F Sun, Q Xue et al. A universal method towards conductive textile for flexible batteries with superior softness. Energy Storage Mater, 36, 272(2021).

    [10] Y T Xu, J J Zhu, J Z Feng et al. A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Mater, 38, 299(2021).

    [11] Q Yang, Y Guo, B X Yan et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv Mater, 32, 2001755(2020).

    [12] Z H Yi, G Y Chen, F Hou et al. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater, 11, 2003065(2021).

    [13] P H Chen, W Y Zhou, Z J Xiao et al. An integrated configuration with robust interfacial contact for durable and flexible zinc ion batteries. Nano Energy, 74, 104905(2020).

    [14] F Wang, O Borodin, T Gao et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater, 17, 543(2018).

    [15] Z W Guo, Y Y Ma, X L Dong et al. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew Chem Int Ed, 57, 11737(2018).

    [16] F Wan, L L Zhang, X Dai et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun, 9, 1656(2018).

    [17] P Tan, B Chen, H R Xu et al. Flexible Zn– and Li–air batteries: Recent advances, challenges, and future perspectives. Energy Environ Sci, 10, 2056(2017).

    [18] F N Mo, G J Liang, Q Q Meng et al. A flexible rechargeable aqueous zinc manganese-dioxide battery working at –20 °C. Energy Environ Sci, 12, 706(2019).

    [19] Y Huang, J W Liu, Q Y Huang et al. Flexible high energy density zinc-ion batteries enabled by binder-free MnO2/reduced graphene oxide electrode. npj Flex Electron, 2, 21(2018).

    [20] H F Li, C P Han, Y Huang et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci, 11, 941(2018).

    [21] D H Wang, H F Li, Z X Liu et al. A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO2 battery with superior shear resistance. Small, 14, 1803978(2018).

    [22] Y Tang, C X Liu, H R Zhu et al. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater, 27, 109(2020).

    [23] H F Li, Z X Liu, G J Liang et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano, 12, 3140(2018).

    [24] S Huang, F Wan, S S Bi et al. A self-healing integrated all-in-one zinc-ion battery. Angew Chem Int Ed, 58, 4313(2019).

    [25] M J Yao, Z S Yuan, S S Li et al. Scalable assembly of flexible ultrathin all-in-one zinc-ion batteries with highly stretchable, editable, and customizable functions. Adv Mater, 33, 2008140(2021).

    [26] L T Ma, S M Chen, X L Li et al. Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by in situ constructed polymer electrolyte. Angew Chem, 132, 24044(2020).

    [27] Z F Wang, F N Mo, L T Ma et al. Highly compressible cross-linked polyacrylamide hydrogel-enabled compressible Zn-MnO2 battery and a flexible battery–sensor system. ACS Appl Mater Interfaces, 10, 44527(2018).

    [28] Z X Liu, D H Wang, Z J Tang et al. A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. Energy Storage Mater, 23, 636(2019).

    [29] J Huang, X Chi, J Yang et al. An ultrastable Na-Zn solid-state hybrid battery enabled by a robust dual-cross-linked polymer electrolyte. ACS Appl Mater Interfaces, 12, 17583(2020).

    [30] Y Zhang, Q R Wang, S S Bi et al. Flexible all-in-one zinc-ion batteries. Nanoscale, 11, 17630(2019).

    [31] J J Wang, J G Wang, H Y Liu et al. A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries. Adv Funct Mater, 31, 2007397(2021).

    [32] D Wang, L Wang, G Liang et al. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano, 13, 10643(2019).

    [33] Y Huang, J Liu, J Q Wang et al. An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew Chem Int Ed, 57, 9810(2018).

    [34] J Y Liu, J W Long, Z H Shen et al. A self-healing flexible quasi-solid zinc-ion battery using all-in-one electrodes. Adv Sci, 8, 2004689(2021).

    [35] Y Quan, M Chen, W Zhou et al. High-performance anti-freezing flexible Zn-MnO2 battery based on polyacrylamide/graphene oxide/ethylene glycol gel electrolyte. Front Chem, 8, 603(2020).

    [36] M S Zhu, X J Wang, H M Tang et al. Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv Funct Mater, 30, 1907218(2020).

    [37] F N Mo, H F Li, Z X Pei et al. A smart safe rechargeable zinc ion battery based on Sol-gel transition electrolytes. Sci Bull, 63, 1077(2018).

    [38] J C Zhu, M J Yao, S Huang et al. Thermal-gated polymer electrolytes for smart zinc-ion batteries. Angew Chem Int Ed, 59, 16480(2020).

    [39] B Wang, J Li, C Hou et al. Stable hydrogel electrolytes for flexible and submarine-use Zn-ion batteries. ACS Appl Mater Interfaces, 12, 46005(2020).

    [40] F N Mo, Z Chen, G J Liang et al. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv Energy Mater, 10, 2000035(2020).

    [41] J L Wang, Y R Lu, H H Li et al. Large area co-assembly of nanowires for flexible transparent smart windows. J Am Chem Soc, 139, 9921(2017).

    [42] X Wang, J H Zhou, Y Zhu et al. Assembly of silver nanowires and PEDOT:PSS with hydrocellulose toward highly flexible, transparent and conductivity-stable conductors. Chem Eng J, 392, 123644(2020).

    [43] Y K Wang, F Chen, Z X Liu et al. A highly elastic and reversibly stretchable all-polymer supercapacitor. Angew Chem, 131, 15854(2019).

    [44] R B Choudhary, S Ansari, B Purty. Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review. J Energy Storage, 29, 101302(2020).

    [45] A Jeyaranjan, T S Sakthivel, C J Neal et al. Scalable ternary hierarchical microspheres composed of PANI/rGO/CeO2 for high performance supercapacitor applications. Carbon, 151, 192(2019).

    [46] L Li, Z Lou, W Han et al. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv Mater Technol, 2, 1600282(2017).

    [47] Y Wang, C Zhu, R Pfattner et al. A highly stretchable, transparent, and conductive polymer. Sci Adv, 3, e1602076(2017).

    [48] Y M Liu, I Murtaza, A Shuja et al. Interfacial modification for heightening the interaction between PEDOT and substrate towards enhanced flexible solid supercapacitor performance. Chem Eng J, 379, 122326(2020).

    [49] Y B Li, Z Q Zhou, W J Deng et al. A superconcentrated water-in-salt hydrogel electrolyte for high-voltage aqueous potassium-ion batteries. ChemElectroChem, 8, 1451(2021).

    [50] Y Deng, H Wang, K Zhang et al. A high-voltage quasi-solid-state flexible supercapacitor with a wide operational temperature range based on a low-cost “water-in-salt” hydrogel electrolyte. Nanoscale, 13, 3010(2021).

    [51] Q Liu, J W Zhou, C H Song et al. 2.2V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by “water-in-salt” gel electrolyte and N-Doped graphene fiber. Energy Storage Mater, 24, 495(2020).

    [52] Z X Liu, Q Yang, D H Wang et al. A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau. Adv Energy Mater, 9, 1902473(2019).

    [53] W D Pan, Y F Wang, X L Zhao et al. High-performance aqueous Na-Zn hybrid ion battery boosted by “water-in-gel” electrolyte. Adv Funct Mater, 31, 2008783(2021).

    Chuan Li, Pei Li, Shuo Yang, Chunyi Zhi. Recently advances in flexible zinc ion batteries[J]. Journal of Semiconductors, 2021, 42(10): 101603
    Download Citation