• Acta Photonica Sinica
  • Vol. 49, Issue 8, 0806001 (2020)
Jia-min GONG, Yu-rong ZHANG*, Jun-hua XU, Ning TIAN, Jun-jie MAO, Jia-man HE, Yu-tian XU, and Xiao-lei YOU
Author Affiliations
  • College of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
  • show less
    DOI: 10.3788/gzxb20204908.0806001 Cite this Article
    Jia-min GONG, Yu-rong ZHANG, Jun-hua XU, Ning TIAN, Jun-jie MAO, Jia-man HE, Yu-tian XU, Xiao-lei YOU. Research on Gain Characteristics of Second-order Raman Fiber Amplifier[J]. Acta Photonica Sinica, 2020, 49(8): 0806001 Copy Citation Text show less

    Abstract

    In order to achieve a larger amplification bandwidth, while increasing the output gain and maintaining a small gain flatness, a second-order Raman fiber amplifier is designed, which used a second-order pump and four first-order pumps to perform distributed Raman amplification on 100 channels of signal light. First, numerically solve the second-order Raman coupled wave equation. Simultaneously, in order to further improve the output performance, the performance parameters of the second-order Raman fiber amplifier are optimized by using particle swarm optimization algorithm. Then, under the same pump parameter configuration, compare the first-order RFA with the second-order RFA. Finally, the factors affecting the output gain of the second-order Raman amplifier are analyzed. Through experimental simulation, within the 1 510~1 610 nm gain bandwidth range, the designed second-order Raman fiber amplifier has an average output gain of 23.768 0 dB, a maximum output gain of 24.124 4 dB and the gain flatness is 0.911 2 dB.
    $ \begin{array}{l} \pm \frac{{{\rm{d}}{P_j}}}{{{\rm{d}}z}} = \mathop \sum \limits_{{v_i} > {v_j}} \frac{{{g_{\rm{R}}}\left( {{v_i} - {v_j}} \right)}}{{{K_{{\rm{eff}}}}{A_{{\rm{eff}}}}}}{P_i}{P_j} - \mathop \sum \limits_{{v_k} < {v_j}} \frac{{{v_j}}}{{{v_k}}}\frac{{{g_{\rm{R}}}\left( {{v_j} - {v_k}} \right)}}{{{K_{{\rm{eff}}}}{A_{{\rm{eff}}}}}}{P_j}{P_k} - {\alpha _j}{P_j} + {\gamma _j}{P_j} + \\ \begin{array}{*{20}{c}} {2h{v_i}\mathop \sum \limits_{{v_i} > {v_j}} \frac{{{g_{\rm{R}}}\left( {{v_i} - {v_j}} \right)}}{{{K_{{\rm{eff}}}}{A_{{\rm{eff}}}}}}{P_j} \cdot \left[ {1 + \frac{1}{{{{\rm{e}}^{h\left( {{v_i} - {v_j}} \right)/KT}} - 1}}} \right] \cdot {\rm{\Delta }}v}&{\left( {i, j, k \in \left[ {1 \cdots N} \right]} \right)} \end{array} \end{array} $ (1)

    View in Article

    $\left\{ {\begin{array}{*{20}{l}} {y\left( {I + 1, j} \right) = y\left( {I, j} \right) + \left[ {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right] \times \frac{h}{6}}\\ {{k_1} = f\left[ {{z_i}, y\left( {I, j} \right)} \right]}\\ {{k_2} = f\left[ {{z_i} + \frac{h}{2}, y\left( {I, j} \right) + h \times \frac{{{k_1}}}{2}} \right]}\\ {{k_3} = f\left[ {{z_i} + \frac{h}{2}, y\left( {I, j} \right) + h \times \frac{{{k_2}}}{2}} \right]}\\ {{k_4} = f\left[ {{z_i} + h, y\left( {I, j} \right) + h \times {k_3}} \right]} \end{array}} \right.$ (2)

    View in Article

    $f = \frac{G}{{{G_{{\rm{max}}}} - {G_{{\rm{min}}}}}}$ (3)

    View in Article

    $G = 10{\rm{lg}}\frac{{{P_j}\left( L \right)}}{{{P_j}\left( 0 \right)}}$ (4)

    View in Article

    ${\rm{\Delta }}G = {G_{{\rm{max}}}} - {G_{{\rm{min}}}}$ (5)

    View in Article

    Jia-min GONG, Yu-rong ZHANG, Jun-hua XU, Ning TIAN, Jun-jie MAO, Jia-man HE, Yu-tian XU, Xiao-lei YOU. Research on Gain Characteristics of Second-order Raman Fiber Amplifier[J]. Acta Photonica Sinica, 2020, 49(8): 0806001
    Download Citation