• Advanced Photonics
  • Vol. 3, Issue 4, 045002 (2021)
Yanwen Hu1, Shiwang Wang1, Junhui Jia1, Shenhe Fu1、2、*, Hao Yin1、2, Zhen Li1、2、*, and Zhenqiang Chen1、2
Author Affiliations
  • 1Jinan University, Department of Optoelectronic Engineering, Guangzhou, China
  • 2Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou, China
  • show less
    DOI: 10.1117/1.AP.3.4.045002 Cite this Article Set citation alerts
    Yanwen Hu, Shiwang Wang, Junhui Jia, Shenhe Fu, Hao Yin, Zhen Li, Zhenqiang Chen. Optical superoscillatory waves without side lobes along a symmetric cut[J]. Advanced Photonics, 2021, 3(4): 045002 Copy Citation Text show less
    References

    [1] E. B. zur Abbe. Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop. Anat., 9, 413-468(1873).

    [2] X. Hao et al. From microscopy to nanoscopy via visible light. Light: Sci. Appl., 2, e108(2013).

    [3] F. Lemoult et al. Resonant metalenses for breaking the diffraction barrier. Phys. Rev. Lett., 104, 203901(2010).

    [4] R. Zuo et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses. Adv. Opt. Mater., 6, 1800795(2018).

    [5] B. Huang, H. Babcock, X. Zhuang. Breaking the diffraction barrier: super-resolution imaing of cells. Cell, 143, 1047-1058(2010).

    [6] X. Xie et al. Harnessing the point-spread function for high-resolution far-field optical microscopy. Phys. Rev. Lett., 113, 263901(2014).

    [7] E. Betzig et al. Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science, 251, 1468-1470(1991).

    [8] S. Thomas et al. Probing of optical near-fields by electron rescattering on the 1 nm scale. Nano Lett., 13, 4790-4794(2013).

    [9] N. Fang et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [10] X. Zhang, Z. Liu. Superlenses to overcome the diffraction limit. Nat. Mater., 7, 435-441(2008).

    [11] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [12] Z. Liu et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [13] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [14] M. Bossi et al. Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability. New J. Phys., 8, 275-284(2006).

    [15] F. M. Huang, N. I. Zheludev. Super-resolution without evanescent waves. Nano Lett., 9, 1249-1254(2009).

    [16] E. T. F. Rogers et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater., 11, 432-435(2012).

    [17] G. Gbur. Using superoscillations for superresolved imaging and subwavelength focusing. Nanophotonics, 8, 205-225(2019).

    [18] G. Chen, Z. Wen, C. Qiu. Superoscillation: from physics to optical applications. Light: Sci. Appl., 8, 56(2019).

    [19] Y. Kozawa, D. Matsunaga, S. Sato. Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica, 5, 86-92(2018).

    [20] M. V. Berry, S. Popescu. Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A: Math. Gen., 39, 6965-6977(2006).

    [21] P. Woodward, J. Lawson. The theoretical precision with which an arbitrary radiation-pattern may be obtained from a source of finite size. J. Inst. Electr. Eng., 95, 363-370(1948).

    [22] D. Tang et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev., 9, 713-719(2015).

    [23] E. T. F. Rogers et al. Super-oscillatory optical needle. Appl. Phys. Lett., 102, 031108(2013).

    [24] K. Huang et al. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photonics Rev., 8, 152-157(2014).

    [25] G. Yuan, E. T. F. Rogers, N. I. Zheludev. ‘Plasmonics’ in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields. Light: Sci. Appl., 8, 2(2019).

    [26] G. Yuan, N. I. Zheludev. Detecting nanometric displacements with optical ruler metrology. Science, 364, 771-775(2019).

    [27] G. T. Di Francia. Super-gain antennas and optical resolving power. Nuovo Cimento Suppl., 9, 426-438(1952).

    [28] F. Qin et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater., 29, 1602721(2017).

    [29] B. K. Singh et al. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams. Light: Sci. Appl., 6, e17050(2017).

    [30] X. H. Dong et al. Superresolution far-feild imaging of complex objects using reduced superoscillating ripples. Optica, 4, 1126-1133(2017).

    [31] Y. Eliezer et al. Breaking the temporal resolution limit by superoscillating optical beats. Phys. Rev. Lett., 119, 043903(2017).

    [32] Y. Eliezer et al. Experimental realization of structured super-oscillatory pulses. Opt. Express, 26, 4933-4941(2018).

    [33] H. Lin et al. Generation and propagation of optical superoscillatory vortex arrays. Ann. Phys., 531, 1900240(2019).

    [34] Y. Hu et al. Focusing optical waves with a rotationally symmetric sharp-edge aperture. Opt. Commun., 413, 136-140(2018).

    [35] D. Weisman et al. Diffractive focusing of waves in time and in space. Phys. Rev. Lett., 118, 154301(2017).

    [36] G. D. Gillen, S. Guha. Modeling and propagation of near-field diffraction patterns: a more complete approach. Am. J. Phys., 72, 1195-1201(2004).

    [37] T. Roy et al. Point spread function of the optical neddle super-oscillatory lens. Appl. Phys. Lett., 104, 231109(2014).

    [38] H. Ni et al. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography. RSC Adv., 8, 20117-20123(2018).

    [39] G. Yuan et al. Far-field superoscillatory metamaterial superlens. Phys. Rev. Appl., 11, 064016(2019).

    [40] G. Yuan, E. T. F. Rogers, N. I. Zheludev. Achromatic super-oscillatory lenses with subwavelength focusing. Light: Sci. Appl., 6, e17036(2017).

    [41] E. Greenfield et al. Experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams. Opt. Express, 21, 13425-13435(2013).

    [42] Y. Eliezer, A. Bahabad. Super-oscillating airy pattern. ACS Photonics, 3, 1053-1059(2016).

    [43] T. Zacharias et al. Axial sub-Fourier focusing of an optical beam. Opt. Lett., 42, 3205-3208(2017).

    [44] J. Durnin, J. J. Miceli, J. H. Eberly. Diffraction-free beams. Phys. Rev. Lett., 58, 1499-1501(1987).

    [45] D. Mcgloin, K. Dholakia. Bessel beams: diffraction in a new light. Contemp. Phys., 46, 15-28(2005).

    Yanwen Hu, Shiwang Wang, Junhui Jia, Shenhe Fu, Hao Yin, Zhen Li, Zhenqiang Chen. Optical superoscillatory waves without side lobes along a symmetric cut[J]. Advanced Photonics, 2021, 3(4): 045002
    Download Citation