• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 2, 340 (2024)
CHENG Dengxiang1,2,3,*, YANG Zhen1,2,3, XIE Jiaxin1,2,3, BAI Mingqiang1,2,3, and MO Zhiwen1,2,3
Author Affiliations
  • 1Institute of Intelligent Information and Quantum Information, Sichuan Normal University, Chengdu 610066, China
  • 2National-Local Joint Engineering Laboratory of System Credibility Automatic Verification,Research Center of Sichuan Normal University, Chengdu 610066, China
  • 3School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.02.016 Cite this Article
    Dengxiang CHENG, Zhen YANG, Jiaxin XIE, Mingqiang BAI, Zhiwen MO. Simultaneous dense coding protocol for N receivers[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 340 Copy Citation Text show less
    References

    [1] Horodecki R, Horodecki P, Horodecki M et al. Quantum entanglement[J]. Reviews of Modern Physics, 81, 865-942(2009).

    [2] Bennett C H, Brassard G, Crépeau C et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 70, 1895-1899(1993).

    [3] Li W J, Bai M Q, Liu Z Y et al. Study on von Neumann entropy in teleportation of the Bell state[J]. Journal of Sichuan Normal University (Natural Science), 45, 306-313(2022).

    [4] Tang Q, Bai M Q, Mo Z W. Bidirectional controlled teleportation and its security based on GHZ-type entangled state[J]. Journal of Sichuan Normal University (Natural Science), 43, 811-820(2020).

    [5] Liu Z Y, Bai M Q, Xiao J Y et al. An asymmetric controlled bidirectional teleportation scheme and optimization[J]. Chinese Journal of Quantum Electronics, 38, 31-36(2021).

    [6] Huelga S F, Vaccaro J A, Chefles A et al. Quantum remote control: Teleportation of unitary operations[J]. Physical Review A, 63, 392-396(2001).

    [7] Liu R J, Bai M Q, Wu F et al. Bidirectional quantum operation teleportation with GHZ state and cluster state[J]. Journal of Sichuan Normal University (Natural Science), 43, 651-658(2020).

    [8] Murao M, Vedral V. Remote information concentration using a bound entangled state[J]. Physical Review Letters, 86, 352-355(2001).

    [9] Zhang Y C, Bai M Q, Liu R J et al. Remote information concentration based on maximally entangled χ state[J]. Journal of Sichuan Normal University (Natural Science), 44, 270-276(2021).

    [10] Liu Z H, Chen H W, Liu W J et al. Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states[J]. Quantum Information Processing, 12, 587-599(2013).

    [11] Yu S, Bai M Q, Tang Q et al. Controlled quantum secure direct communication protocol based on three-particle GHZ-like state[J]. Chinese Journal of Quantum Electronics, 38, 57-65(2021).

    [12] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters, 69, 2881-2884(1992).

    [13] Hu X M, Guo Y, Liu B H et al. Beating the channel capacity limit for superdense coding with entangled ququarts[J]. Science Advances, 4, eaat9304(2018).

    [14] Meher N. Scheme for realizing quantum dense coding via entanglement swapping[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 065502(2020).

    [15] Ji Z X, Fan P R, Zhang H G et al. Several two-party protocols for quantum private comparison using entanglement and dense coding[J]. Optics Communications, 459, 124911(2020).

    [16] Braunstein S L, Kimble H J. Dense coding for continuous variables[J]. Physical Review A, 61, 042302(2000).

    [17] Ban M. Reliability function of quantum dense coding of continuous variables[J]. Optics Communications, 189, 97-102(2001).

    [18] Bose S, Vedral V, Knight P L. Multiparticle generalization of entanglement swapping[J]. Physical Review A, 57, 822-829(1998).

    [19] Liu X S, Long G L, Tong D M et al. General scheme for superdense coding between multiparties[J]. Physical Review A, 65, 022304(2002).

    [20] Grudka A, Wójcik A. Symmetric scheme for superdense coding between multiparties[J]. Physical Review A, 66, 014301(2002).

    [21] Bruß D, Lewenstein M, Sen A et al. Dense coding with multipartite quantum states[J]. International Journal of Quantum Information, 4, 415-428(2006).

    [22] Mo Z W, Yang X, Jiang Y T et al. Theoretical quantum dense coding[J]. Journal of Sichuan Normal University (Natural Science), 42, 115-127(2019).

    [23] Hao J C, Li C F, Guo G C. Controlled dense coding using the Greenberger-Horne-Zeilinger state[J]. Physical Review A, 63, 054301(2001).

    [24] Situ H Z, Qiu D W. Simultaneous dense coding[J]. Journal of Physics A: Mathematical and Theoretical, 43, 055301(2010).

    [25] Situ H, Qiu D, Mateus P et al. Secure N-dimensional simultaneous dense coding and applications[J]. International Journal of Quantum Information, 13, 1550051(2015).

    [26] Situ H Z. Controlled simultaneous teleportation and dense coding[J]. International Journal of Theoretical Physics, 53, 1003-1009(2014).

    [27] Zhang C, Situ H Z, Li Q et al. Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states[J]. International Journal of Quantum Information, 14, 1650023(2016).

    [28] Yang X, Bai M Q, Zuo Z C et al. Secure simultaneous dense coding using χ-type entangled state[J]. Quantum Information Processing, 17, 61(2018).

    [29] Huang Z M, Zhang C, Situ H Z. Performance analysis of simultaneous dense coding protocol under decoherence[J]. Quantum Information Processing, 16, 227(2017).

    [30] Camps D, Van Beeumen R, Yang C. Quantum Fourier transform revisited[J]. Numerical Linear Algebra With Applications, 28, e2331(2021).

    Dengxiang CHENG, Zhen YANG, Jiaxin XIE, Mingqiang BAI, Zhiwen MO. Simultaneous dense coding protocol for N receivers[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 340
    Download Citation