• Infrared and Laser Engineering
  • Vol. 52, Issue 8, 20230254 (2023)
Feng Gao1,2, Yunpeng Cai1,2, Zhenxu Bai1,2, Yaoyao Qi1,2..., Bingzheng Yan1,2, Yulei Wang1,2, Zhiwei Lv1,2 and Jie Ding1,2|Show fewer author(s)
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    DOI: 10.3788/IRLA20230254 Cite this Article
    Feng Gao, Yunpeng Cai, Zhenxu Bai, Yaoyao Qi, Bingzheng Yan, Yulei Wang, Zhiwei Lv, Jie Ding. SHG efficiency of nonlinear crystal walk-off effect[J]. Infrared and Laser Engineering, 2023, 52(8): 20230254 Copy Citation Text show less
    References

    [1] Y Cai, F Gao, H Chen, et al. Continuous-wave diamond laser with a tunable wavelength in orange–red wavelength band. Optics Communications, 528, 128985(2023).

    [2] Hui Chen, Zhenxu Bai, Jiancai Wang, . Hundred-Watt green picosecond laser based on LBO frequency-doubled photonic crystal fiber amplifier. Infrared and Laser Engineering, 50, 20200522(2021).

    [3] L Matos, D Kleppner, O Kuzucu, et al. Direct frequency comb generation from an octave-spanning, prismless Ti: sapphire laser. Optics Letters, 29, 1683-1685(2004).

    [4] C Wang, M Chen, H Xiang, et al. 8 mJ 355 nm 1 kHz burst-mode picosecond laser systems. Laser Physics, 32, 045801(2022).

    [5] X Huo, Y Qi, Y Zhang, et al. Research development of 589 nm laser for sodium laser guide stars. Optics and Lasers in Engineering, 134, 106207(2020).

    [6] Wei You, Xuezong Yang, Weibiao Chen, . Review of 589 nm sodium laser guide stars (Invited). Electro-Optic Technology Application, 36, 1-14, 22(2021).

    [7] J Hu, D Zhu. Investigation of carbon fiber reinforced plastics machining using 355 nm picosecond pulsed laser. Applied Composite Materials, 25, 589-600(2018).

    [8] P Franken, A E Hill, C E Peters, et al. Generation of optical harmonics. Physical Review Letters, 7, 118(1961).

    [9] S C Kumar, G Samanta, K Devi, et al. High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation. Optics Express, 19, 11152-11169(2011).

    [10] N Bloembergen, P Pershan. Light waves at the boundary of nonlinear media. Physical Review, 128, 606(1962).

    [11] D A Kleinman. Theory of second harmonic generation of light. Physical Review, 128, 1761(1962).

    [12] G Boyd, A Ashkin, J Dziedzic, et al. Second-harmonic generation of light with double refraction. Physical Review, 137, A1305(1965).

    [13] C Jung, W Shin, B-A Yu, et al. Enhanced 355-nm generation using a simple method to compensate for walk-off loss. Optics Express, 20, 941-948(2012).

    [14] J-J Zondy, M Abed, S Khodja. Twin-crystal walk-off-compensated type-II second-harmonic generation: single-pass and cavity-enhanced experiments in KTiOPO4. JOSA B, 11, 2368-2679(1994).

    [15] K Li, H Zhao, H Ma, et al. Theoretical and experimental researches on the walk-off compensation of an intracavity doubling red laser using a twin-BIBO-crystal. Optics Express, 29, 43687-43699(2021).

    [16] B Ruffing, A Nebel, R Wallenstein. High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range. Applied Physics B, 72, 137-149(2001).

    [17] G Boyd, D Kleinman. Parametric interaction of focused Gaussian light beams. Journal of Applied Physics, 39, 3597-3639(1968).

    [18] G K Samanta, S C Kumar, M Ebrahim-Zadeh. Stable, 9.6 W, continuous-wave, single-frequency, fiber-based green source at 532 nm. Optics Letters, 34, 1561-1563(2009).

    [19] F Brehat, B Wyncke. Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals. Journal of Physics B: Atomic, Molecular and Optical Physics, 22, 1891(1989).

    [20] A M Weiner, A M Kan’an, D E Leaird. High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal. Optics Letters, 23, 1441-1443(1998).

    [21] A V Smith, D J Armstrong, W J Alford. Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals. JOSA B, 15, 122-141(1998).

    [22] H Wang, A M Weiner. Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion. IEEE Journal of Quantum Electronics, 39, 1600-1618(2003).

    [23] N A Chaitanya, A Aadhi, R P Singh, et al. Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal. Optics Letters, 39, 5419-5422(2014).

    [24] N A Chaitanya, A Aadhi, S C Kumar, et al. Frequency-doubling of femtosecond pulses in "thick" nonlinear crystals with different temporal and spatial walk-off parameters. IEEE Photonics Journal, 8, 1-13(2016).

    [25] D S Hum, M M Fejer. Quasi-phasematching. Comptes Rendus Physique, 8, 180-198(2007).

    [26] R Eckardt, J Reintjes. Phase matching limitations of high efficiency second harmonic generation. IEEE Journal of Quantum Electronics, 20, 1178-1187(1984).

    Feng Gao, Yunpeng Cai, Zhenxu Bai, Yaoyao Qi, Bingzheng Yan, Yulei Wang, Zhiwei Lv, Jie Ding. SHG efficiency of nonlinear crystal walk-off effect[J]. Infrared and Laser Engineering, 2023, 52(8): 20230254
    Download Citation