• Infrared and Laser Engineering
  • Vol. 49, Issue 9, 20201038 (2020)
Hongchen Chu and Yun Lai
Author Affiliations
  • Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.3788/IRLA20201038 Cite this Article
    Hongchen Chu, Yun Lai. Ultrathin invisibility cloaks based on metasurfaces[J]. Infrared and Laser Engineering, 2020, 49(9): 20201038 Copy Citation Text show less
    References

    [1] T J Cui, M Q Qi, X Wan. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications, 3, e218(2014).

    [2] L Gao, Q Cheng, J Yang. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light: Science & Applications, 4, e324(2015).

    [3] L Liang, M Qi, J Yang. Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials. Advanced Optical Materials, 3, 1374-1380(2015).

    [4] S Liu, T J Cui, Q Xu. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light: Science & Applications, 5, e16076(2016).

    [5] J B Pendry, D Schurig, D R Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [6] U Leonhardt. Optical conformal mapping. Science, 312, 1777-1780(2006).

    [7] D Schurig, J J Mock, B J Justice. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [8] J Li, J B Pendry. Hiding under the carpet: A new strategy for cloaking. Physical Review Letters, 101, 203901(2008).

    [9] J Valentine, J Li, T Zentgraf. An optical cloak made of dielectrics. Nature Materials, 8, 568-571(2009).

    [10] Y Lai, H Chen, Z Zhang. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Physical Review Letters, 102, 93901(2009).

    [11] Y Lai, J Ng, H Chen. Illusion optics: The optical transformation of an object into another object. Physical Review Letters, 102, 253902(2009).

    [12] H Chen, B Zheng, L Shen. Ray-optics cloaking devices for large objects in incoherent natural light. Nature Communications, 4, 2652(2013).

    [13] B Zheng, R Zhu, L Jing. 3D visible-light invisibility cloak. Advanced Science, 5, 1800056(2018).

    [14] N Yu, P Genevet, M A Kats. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [15] M Khorasaninejad, W T Chen, R C Devlin. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [16] S Wang, P C Wu, V Su. A broadband achromatic metalens in the visible. Nature Nanotechnology, 13, 227-232(2018).

    [17] W T Chen, A Y Zhu, V Sanjeev. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 13, 220-226(2018).

    [18] R J Lin, V C Su, S Wang. Achromatic metalens array for full-colour light-field imaging. Nat Nanotechnol, 14, 227-231(2019).

    [19] S Sun, Q He, S Xiao. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials, 11, 426-431(2012).

    [20] W Sun, Q He, S Sun. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light: Science & Applications, 5, e16003(2016).

    [21] L Huang, X Chen, H Mühlenbernd. Three-dimensional optical holography using a plasmonic metasurface. Nature Communications, 4, 2808(2013).

    [22] X Ni, A V Kildishev, V M Shalaev. Metasurface holograms for visible light. Nature Communications, 4, 2807(2013).

    [23] L Huang, H Muhlenbernd, X Li. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv Mater, 27, 6444-6449(2015).

    [24] G Zheng, H Mühlenbernd, M Kenney. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 10, 308-312(2015).

    [25] Z Deng, J Deng, X Zhuang. Diatomic metasurface for vectorial holography. Nano Letters, 18, 2885-2892(2018).

    [26] L Huang, X Song, B Reineke. Volumetric generation of optical vortices with metasurfaces. Acs Photonics, 4, 338-346(2017).

    [27] Liu B, Chu H, Giddens H, et al. Rotational Doppler effect of spinning metasurface in radar system[C]IEEE, 2019.

    [28] X Yin, Z Ye, J Rho. Photonic spin hall effect at metasurfaces. Science, 339, 1405-1407(2013).

    [29] N Shitrit, I Yulevich, E Maguid. Spin-optical metamaterial route to spin-controlled photonics. Science, 340, 724-726(2013).

    [30] W Luo, S Xiao, Q He. Photonic spin hall effect with nearly 100% efficiency. Advanced Optical Materials, 3, 1102-1108(2015).

    [31] X Ling, X Zhou, X Yi. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light: Science & Applications, 4, e290(2015).

    [32] L Li, Z Liu, X Ren. Metalens-array–based high-dimensional and multiphoton quantum source. Science (American Association for the Advancement of Science), 368, 1487-1490(2020).

    [33] L Li, Cui T Jun, W Ji. Electromagnetic reprogrammable coding-metasurface holograms. Nature Communications, 8, 197(2017).

    [34] S M Kamali, E Arbabi, A Arbabi. Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles. Physical Review X, 7, 0410564(2017).

    [35] X G Zhang, W X Jiang, T J Cui. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity. Applied Physics Letters, 113, 91601(2018).

    [36] J Zhang, Z L Mei, W R Zhang. An ultrathin directional carpet cloak based on generalized Snell's law. Applied Physics Letters, 103, 151115(2013).

    [37] X Ni, Z J Wong, M Mrejen. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310-1314(2015).

    [38] Y Yang, H Wang, F Yu. A metasurface carpet cloak for electromagnetic, acoustic and water waves. Scientific Reports, 6, 20219(2016).

    [39] B Orazbayev, Estakhri N Mohammadi, A Alù. Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves. Advanced Optical Materials, 5, 1600606(2017).

    [40] L Y Hsu, T Lepetit, B Kante. Extremely thin dielectric metasurface for carpet cloaking. Progress in Electromagnetics Research-Pier, 152, 33-40(2015).

    [41] Y Yang, L Jing, B Zheng. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Advanced Materials, 28, 6866-6871(2016).

    [42] D L Sounas, R Fleury, A Alù. Unidirectional cloaking based on metasurfaces with balanced loss and gain. Physical Review Applied, 4, 14005(2015).

    [43] H Li, M Rosendo-López, Y Zhu. Ultrathin acoustic parity-time symmetric metasurface cloak. Research, 2019, 1-7(2019).

    [44] H Chu, Q Li, B Liu. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light: Science & Applications, 7, 50(2018).

    [45] M R Silveirinha, N Engheta. Tunneling of electromagnetic energy through subwavelength channels and bends using Epsilon-near-zero materials. Phys Rev Lett, 97, 157403(2006).

    [46] M G Silveirinha, N Engheta. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using epsilon near-zero metamaterials. Physical Review B, 76, 245109(2007).

    [47] R Liu, Q Cheng, T Hand. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Physical Review Letters, 100, 23903(2008).

    [48] B Edwards, A Alù, M E Young. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Physical Review Letters, 100, 33903(2008).

    [49] X Huang, Y Lai, Z H Hang. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Materials, 10, 582-586(2011).

    [50] I Liberal, A M Mahmoud, Y Li. Photonic doping of epsilon-near-zero media. Science, 355, 1058-1062(2017).

    [51] C Qian, B Zheng, Y Shen. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nature Photonics, 14, 383-390(2020).

    [52] J Yang, C Huang, X Wu. Dual-wavelength carpet cloak using ultrathin metasurface. Advanced Optical Materials, 1800073(201864).

    [53] C Wang, Y Yang, Q Liu. Multi-frequency metasurface carpet cloaks. Optics Express, 26, 14123(2018).

    [54] C Huang, J Yang, X Wu. Reconfigurable metasurface cloak for dynamical electromagnetic illusions. Acs Photonics, 5, 1718-1725(2018).

    [55] P Chen, C Argyropoulos, A Alù. Broadening the cloaking bandwidth with non- foster metasurfaces. Physical Review Letters, 111, 233001(2013).

    [56] P Chen, A Alù. Mantle cloaking using thin patterned metasurfaces. Physics Review B, 84, 205110(2011).

    [57] A Alù, N Engheta. Cloaking a sensor. Physical Review Letters, 102, 233901(2009).

    [58] A Alù, N Engheta. Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E Stat Nonlin Soft Matter Phys, 72, 16623(2005).

    [59] F Monticone, C A Valagiannopoulos, A Alù. Parity-time symmetric nonlocal metasurfaces: All-angle negative refraction and volumetric imaging. Physical Review X, 6, 41018(2016).

    [60] M Qiu, M Jia, S Ma. Angular dispersions in terahertz metasurfaces: Physics and applications. Physical Review Applied, 9, 0540505(2018).

    [61] X Zhang, Q Li, F Liu. Controlling angular dispersions in optical metasurfaces. Light: Science & Applications, 9, 76(2020).

    CLP Journals

    [1] Hexiang He, Yongyao Li, Sing Wong Kam. Bifunctional scattering light modulation method based on phase conjugation for scattering imaging and optical illusion (invited)[J]. Infrared and Laser Engineering, 2022, 51(8): 20220266

    Hongchen Chu, Yun Lai. Ultrathin invisibility cloaks based on metasurfaces[J]. Infrared and Laser Engineering, 2020, 49(9): 20201038
    Download Citation