• Photonics Research
  • Vol. 11, Issue 6, 1094 (2023)
Yaqing Jin1、2, Ye Yang3、4、5, Huibo Hong1、2, Xiao Xiang1、2, Run'ai Quan1、2, Tao Liu1、2, Ninghua Zhu3、4、6, Ming Li3、4、6、7, Shougang Zhang1、2、8, and Ruifang Dong1、2、*
Author Affiliations
  • 1Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China
  • 2School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 4School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5The 29th Research Institute of China Electronics Technology Group Corporation, Chengdu 610029, China
  • 6Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
  • 7e-mail: ml@semi.ac.cn
  • 8e-mail: szhang@ntsc.ac.cn
  • show less
    DOI: 10.1364/PRJ.484142 Cite this Article Set citation alerts
    Yaqing Jin, Ye Yang, Huibo Hong, Xiao Xiang, Run'ai Quan, Tao Liu, Ninghua Zhu, Ming Li, Shougang Zhang, Ruifang Dong. Surpassing the classical limit of the microwave photonic frequency fading effect by quantum microwave photonics[J]. Photonics Research, 2023, 11(6): 1094 Copy Citation Text show less
    References

    [1] C. H. Lee. Microwave Photonics(2006).

    [2] J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, S. Sales. Microwave photonic signal processing. J. Lightwave Technol., 31, 571-586(2013).

    [3] D. B. Hunter, L. G. Edvell, M. A. Englund, 249-252(2006).

    [4] J. Yao. Photonics to the rescue: a fresh look at microwave photonic filters. IEEE Microw. Mag., 16, 46-60(2015).

    [5] X. Zou, L. Bing, P. Wei, L. Yan, J. Yao. Photonics for microwave measurements. Laser Photon. Rev., 10, 711-734(2016).

    [6] J. Capmany, B. Ortega, D. Pastor, S. Sales. Discrete-time optical processing of microwave signals. J. Lightwave Technol., 23, 702-723(2005).

    [7] J. Mora, M. Andrés, J. L. Cruz, B. Ortega, S. Sales. Tunable all-optical negative multitap microwave filters based on uniform fiber Bragg gratings. Opt. Lett., 28, 1308-1310(2003).

    [8] S. Pan, Y. Zhang. Microwave photonic radars. J. Lightwave Technol., 38, 5450-5484(2020).

    [9] F. Laghezza, F. Scotti, G. Serafino, L. Banchi, V. Malaspina, P. Ghelfi, A. Bogoni. Field evaluation of a photonics-based radar system in a maritime environment compared to a reference commercial sensor. IET Radar Sonar Navig., 9, 1040-1046(2015).

    [10] P. Rakshit, N. R. Das. Effect of device parameters on improving the quantum efficiency of a lateral Si p–i–n photodetector. Opt. Quantum Electron., 52, 371(2020).

    [11] J. Mora, J. L. Cruz, A. Diez, M. V. Andres, J. Capmany. Microwave photonics based on fiber Bragg gratings. International Conference on Transparent Optical Networks, 175-179(2003).

    [12] Y. Yang, Y. Jin, X. Xiang, T. Hao, W. Li, T. Liu, S. Zhang, N. Zhu, R. Dong, M. Li. Single-photon microwave photonics. Sci. Bull., 67, 700-706(2022).

    [13] H. Fedder, S. Oesterwind, M. Wick, I. Shavrin, M. Schlagmüller, F. Olbrich, P. Michler, T. Veigel, M. Berroth, N. Walter. Characterization of electro-optical devices with low jitter single photon detectors -- towards an optical sampling oscilloscope beyond 100 GHz. European Conference on Optical Communication (ECOC), 1-3(2018).

    [14] X. Wang, B. A. Korzh, P. O. Weigel, D. J. Nemchick, B. J. Drouin, W. Becker, Q.-Y. Zhao, D. Zhu, M. Colangelo, A. E. Dane. Oscilloscopic capture of greater-than-100 GHz, ultra-low power optical waveforms enabled by integrated electrooptic devices. J. Lightwave Technol., 38, 166-173(2019).

    [15] B. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics, 14, 250-255(2020).

    [16] R. Quan, R. Dong, Y. Zhai, F. Hou, X. Xiang, H. Zhou, C. Lv, Z. Wang, L. You, T. Liu. Simulation and realization of a second-order quantum-interference-based quantum clock synchronization at the femtosecond level. Opt. Lett., 44, 614-617(2019).

    [17] R. Quan, Y. Zhai, M. Wang, F. Hou, S. Wang, X. Xiang, T. Liu, S. Zhang, R. Dong. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons. Sci. Rep., 6, 30453(2016).

    [18] F. Hou, R. Quan, R. Dong, X. Xiang, B. Li, T. Liu, X. Yang, H. Li, L. You, Z. Wang. Fiber-optic two-way quantum time transfer with frequency-entangled pulses. Phys. Rev. A, 100, 023849(2019).

    [19] D. Feng. Review of quantum navigation. IOP Conf. Ser., 237, 032027(2019).

    [20] C. Y. Gao, P. L. Guo, B. C. Ren. Efficient quantum secure direct communication with complete Bell-state measurement. Quantum Eng., 3, e83(2021).

    [21] H. Zhang, Z. Sun, R. Qi, L. Yin, G.-L. Long, J. Lu. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl., 11, 83(2022).

    [22] J. Mora, A. Ruiz-Alba, W. Amaya, A. Martinez, V. Garcia-Munoz, D. Calvo, J. Capmany. Microwave photonics parallel quantum key distribution. arXiv(2011).

    [23] T. B. Pittman, Y. Shih, D. Strekalov, A. V. Sergienko. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429-R3432(1995).

    [24] M. Malik, O. S. Magaña-Loaiza, R. W. Boyd. Quantum-secured imaging. Appl. Phys. Lett., 101, 241103(2012).

    [25] L. Jaeger. The Second Quantum Revolution: From Entanglement to Quantum Computing and Other Super-Technologies(2018).

    [26] Y. Jin, Y. Yang, H. Hong, X. Xiang, R. Quan, T. Liu, S. Zhang, N. Zhu, M. Li, R. Dong. Quantum microwave photonics in radio-over-fiber systems. Photon. Res., 10, 1669-1678(2022).

    [27] V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, G. Leuchs. Temporal shaping of single photons enabled by entanglement. Phys. Rev. A, 96, 043822(2017).

    [28] V. Averchenko, D. Sych, C. Marquardt, G. Leuchs. Efficient generation of temporally shaped photons using nonlocal spectral filtering. Phys. Rev. A, 101, 013808(2020).

    [29] V. Giovannetti, L. Maccone, J. H. Shapiro, F. N. Wong. Extended phase-matching conditions for improved entanglement generation. Phys. Rev. A, 66, 043813(2002).

    [30] X. Xiang, R. Dong, R. Quan, Y. Jin, Y. Yang, M. Li, T. Liu, S. Zhang. Hybrid frequency-time spectrograph for the spectral measurement of the two-photon state. Opt. Lett., 45, 2993-2996(2020).

    [31] J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, X. Xie. Improving the timing jitter of a superconducting nanowire single-photon detection system. Appl. Opt., 56, 2195-2200(2017).

    Yaqing Jin, Ye Yang, Huibo Hong, Xiao Xiang, Run'ai Quan, Tao Liu, Ninghua Zhu, Ming Li, Shougang Zhang, Ruifang Dong. Surpassing the classical limit of the microwave photonic frequency fading effect by quantum microwave photonics[J]. Photonics Research, 2023, 11(6): 1094
    Download Citation