• Laser & Optoelectronics Progress
  • Vol. 50, Issue 8, 80003 (2013)
Sun Siming1, Sun Yunlu1, Liu Dongxu1, Chen Qidai1, Dong Wenfei1, and Sun Hongbo1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop50.080003 Cite this Article Set citation alerts
    Sun Siming, Sun Yunlu, Liu Dongxu, Chen Qidai, Dong Wenfei, Sun Hongbo. Protein Functional Devices Manufactured by Femtosecond Laser Direct Writing[J]. Laser & Optoelectronics Progress, 2013, 50(8): 80003 Copy Citation Text show less
    References

    [1] S Kawata, Sun Hongbo, T Tanaka, et al.. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

    [2] Zang Yonglai, Chen Qidai, Xia Hong, et al.. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 2010, 5(5): 435-448.

    [3] S Turunen, E Kapyla, K Terzaki, et al.. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity[J]. Biofabrication, 2011, 3(4): 045002.

    [4] Bryan Kaehr, Jason B Shear. Mask-directed multiphoton lithography[J]. J Am Chem Soc, 2007, 129(7): 1904-1905.

    [5] Bryan Kaehr, Richard Allen, David J Javier, et al.. Guiding neuronal development with in situmicrofabrication[J]. PNAS, 2004, 101(46): 16104-16108.

    [6] Stephanie K Seidlits, Christine E Schmidt, Jason B Shear, et al.. High-resolution patterning of hydrogels in three dimensions using direct-write photofabrication for cell guidance[J]. Adv Funct Mater, 2009, 19: 3543-3551.

    [7] Ryan T Hill, Jennifer L Lyon, Richard Allen, et al.. Microfabrication of three-dimensional bioelectronic architectures[J]. J Am Chem Soc, 2005, 127(30): 10707-10711.

    [8] Sun Yunlu, Dong Wenfei, Yang Ruizhu, et al.. Dynamically tunable protein microlenses[J]. Angew Chem Int Ed, 2012, 51(7): 1558-1562.

    [9] Sun Yunlu, Liu Dongxu, Dong Wenfei, et al.. Tunable protein harmonic diffractive micro-optical elements[J]. Opt Lett, 2012, 37(14): 2973-2975.

    [10] Shaun D Gittard, Alexander Nguyen, Kotaro Obata, et al.. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomed Opt Express, 2011, 2(11): 3167-3178.

    [11] J D Pitts, P J Campagnola, G A Epling, et al.. Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release[J]. Macromol, 2000, 33(5): 1514-1523.

    [12] J D Pitts, A R Howell, R Taboada, et al.. New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: bovine serum albumin and type 1 collagen[J]. Photochem Photobiol, 2002, 76(2): 135-144.

    [13] A Ovsianikov, A Deiwick, S Van Vlierberghe, et al.. Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues[J]. Materials, 2011, 4(1): 288-299.

    [14] A Ovsianikov, A Deiwick, S Van Vlierberghe, et al.. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering[J]. Biomacromolecules, 2011, 12(4): 851-858.

    [15] Eric C Spivey, Eric T Ritschdorff, Jodi L Connell, et al.. Multiphoton lithography of unconstrained three-dimensional protein microstructures[J]. Adv Funct Mater, 2013, 23(3): 333-339.

    [16] Chi-Hsiang Lien, Wen-Shuo Kuo, Keng-Chi Cho, et al.. Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry[J]. Opt Express, 2011, 19(7): 6260-6268.

    [17] He Yan, Huang Bailing, Lu Dongxu, et al.. “Overpass” at the junction of a crossed microchannel: an enabler for 3D microfluidic chips[J]. Lab Chip, 2012,12(20): 3866-3869.

    [18] Kenji Takada, Wu Dong, Chen Qidai, et al.. Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires[J]. Optics Letters, 2009, 34(5): 566-568.

    [19] Ku Jinfeng, Chen Qidai, Zhang Ran, et al.. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing[J]. Optics Letters, 2011, 36(15): 2871-2873.

    [20] Koshiro Kaneko, Kazuo Yamamoto, Satoshi Kawata, et al.. Metal-nanoshelled three-dimensional photonic lattices[J]. Optics Letters, 2008, 33(17): 1999-2001.

    [21] Lin Xiaofeng, Chen Qidai, Niu Ligang, et al.. Mask-free production of integratable monolithic micro logarithmic axicon lenses[J]. J Lightwave Technol, 2010, 28(8): 1256-1260.

    [22] Chen Qidai, Lin Xiaofeng, Niu Ligang, et al.. Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization[J]. Opt Lett, 2008, 33(21): 2559-2561.

    [23] Sana Nakanishi, Satoru Shoji, Satoshi Kawata, et al.. Giant elasticity of photopolymer nanowires[J]. Appl Phys Lett, 2007, 91(6): 063122.

    [24] Kenji Takada, Koshiro Kaneko, Yu-Dong Li, et al.. Temperature effects on pinpoint photopolymerization and polymerized micronanostructures[J]. Appl Phys Lett, 2008, 92(4): 041902.

    [25] Wu Dong, Wu Sizhu,Niu Ligang, et al.. High numerical aperture microlens arrays of close packing[J]. Appl Phys Lett, 2010, 97(3): 031109.

    [26] Wu Dong, Chen Qidai, Niu Ligang, et al.. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab Chip, 2009, 9(10): 2391-2394.

    [27] Wu Dong, Chen Qidai, Niu Ligang, et al.. 100% Fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision[J]. IEEE Photon Technol Lett, 2009, 21(20): 1535-1537.

    [28] Wu Dong, Niu Ligang, Chen Qidai, et al.. High efficiency multilevel phase-type fractal zone plates[J]. Opt Lett, 2008, 33(24): 2913-2915.

    [29] Wang Juan, He Yan, Xia Hong, et al.. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization[J]. Lab Chip, 2010, 10(15): 1993-1996.

    [30] Tian Ye, Zhang Yonglai, Ku Jinfeng, et al.. High performance magnetically controllable microturbines[J]. Lab Chip, 2010, 10(21): 2902-2905.

    [31] Wang Juan, Xia Hong, Xu Binbin, et al.. Remote manipulation of micronanomachines containing magnetic nanoparticles[J]. Opt Lett, 2009, 34(5): 581-583.

    [32] Xia Hong, Zhang Wenyi, Wang Fangfang, et al.. Three-dimensional micronanofabrication via two-photon-excited photoisomerization[J]. Appl Phys Lett, 2009, 95(8): 083118.

    [33] Xia Hong, Wang Juan, Tian Ye, et al.. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization[J]. Adv Mater, 2010, 22(29): 3204-3207.

    [34] Tian Ye, Zhang Yonglai, Xia Hong, et al.. Solvent response of polymers for micromachine manipulation[J]. Phys Chem Chem Phys, 2011, 13(11): 4835-4838.

    [35] Lin Xiaofeng, Hu Guoqing, Chen Qidai, et al.. A light-driven turbine-like micro-rotor and study on its light-to-mechanical power conversion efficiency[J]. Appl Phys Lett, 2012, 101(11): 113901.

    [36] Guo Li, Xia Hong, Fan Huitao, et al.. Femtosecond laser direct patterning of sensing materials toward flexible integration of micronanosensors[J]. Opt Lett, 2010, 35(10): 1695-1697.

    [37] Xu Binbin, Ma Zhuochen, Wang Huan, et al.. A SERS-active microfluidic device with tunable surface plasmon resonances[J]. Electrophoresis, 2011, 32(23): 3378-3384.

    [38] Xu Binbin, Xia Hong, Niu Ligang, et al.. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating[J]. Small, 2010, 6(16): 1762-1766.

    [39] Xu Binbin, Zhang Ran, Liu Xueqing, et al.. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring[J]. Chem Commun, 2012, 48(11): 1680-1682.

    [40] Zhang Yonglai, Guo Li, Wei Shu, et al.. Direct imprinting of microcircuits on grapheme oxides film by femtosecond laser reduction[J]. Nano Today, 2010, 5(1): 15-20.

    [41] Xu Binbin, Zhang Yonglai, Zhang Ran, et al.. Programmable assembly of CdTe quantum dots into microstructures by femtosecond laser direct writing[J]. J Mater Chem C, 2013,doi: 10.1039/c3tc30666f.

    [42] Xu Binbin, Zhang Ran, Wang Huan, et al.. Laser patterning of conductive gold micronanostructures from nanodots[J]. Nanoscale, 2012, 4(22): 6955-6958.

    [43] Guo Li, Shao Ruiqiang, Zhang Yonglai, et al.. Bandgap tailoring and synchronous microdevices patterning of graphene oxides[J]. J Phys Chem C, 2012, 116(5): 3594-3599.

    [44] Ryan Toler Hill. Active Three-Dimensional Protein Microstructures[D]. Austin: The University of Texas at Austin, 2006. 9-12.

    [45] Bryan Kaehr, Nusret Ertas, Rex Nielson, et al.. Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser[J]. Anal Chem, 2006, 78(9): 3198-3202.

    [46] Richard Allen, Rex Nielson, Dana D Wise, et al.. Catalytic three-dimensional protein architectures[J]. Anal Chem, 2005, 77(16): 5089-5095.

    [47] Constantine Y Khripin, C Jeffrey Brinker, Bryan Kaehr. Mechanically tunable multiphoton fabricated protein hydrogels investigated using atomic force microscopy[J]. Soft Matter, 2010, 6(12): 2842-2848.

    [48] Bryan Kaehr, Jason B Shear. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation[J]. PNAS, 2008, 105(26): 8850-8854.

    [49] Eric T Ritschdorff, Rex Nielson, Jason B Shear. Multi-focal multiphoton lithography[J]. Lab Chip, 2012, 12(5): 867-871.

    CLP Journals

    [1] Xing Songling, Liu Lei, Zou Guisheng, Zhang Xueqian, Bai Hailin, Y N. Effects of Femtosecond Laser Parameters on Hole Drilling of Silica Glass[J]. Chinese Journal of Lasers, 2015, 42(4): 403001

    [2] Fang Zhiwei, Su Yahui, Wang Chaowei, Yang Liang, Wang Jinli. Analysis and Set Up of Optical System for Holographic Femtosecond Laser Processing[J]. Acta Optica Sinica, 2014, 34(2): 222002

    [3] Lu Linlin, Jia Yudong, Zhang Xiaoqing. Research Progress of Frequency Resolved Optical Gating Femtosecond Pulse Width Measurement Technology[J]. Laser & Optoelectronics Progress, 2015, 52(7): 70005

    Sun Siming, Sun Yunlu, Liu Dongxu, Chen Qidai, Dong Wenfei, Sun Hongbo. Protein Functional Devices Manufactured by Femtosecond Laser Direct Writing[J]. Laser & Optoelectronics Progress, 2013, 50(8): 80003
    Download Citation