• Laser & Optoelectronics Progress
  • Vol. 57, Issue 19, 191601 (2020)
Hongpeng Li1, Jinma Sheng1, Bin Li1, Jiang Chang1, and Yujiao Zhang2、*
Author Affiliations
  • 1State Grid Anhui Electric Power Co., Ltd. Economic Technology Research Institute, Hefei, Anhui 230071, China
  • 2Hefei Innovation Research Institute, Beihang University, Hefei, Anhui 230012, China
  • show less
    DOI: 10.3788/LOP57.191601 Cite this Article Set citation alerts
    Hongpeng Li, Jinma Sheng, Bin Li, Jiang Chang, Yujiao Zhang. Microstructures and Properties of Laser Surface-Reinforced 316L Stainless Steel[J]. Laser & Optoelectronics Progress, 2020, 57(19): 191601 Copy Citation Text show less
    References

    [1] Guo P, Zou B, Huang C Z et al. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition[J]. Journal of Materials Processing Technology, 240, 12-22(2017). http://www.sciencedirect.com/science/article/pii/S0924013616303181

    [2] Li Y H, Gao S Y. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process[J]. Applied Physics A, 123, 660(2017). http://link.springer.com/10.1007/s00339-017-1275-9

    [3] Ganesh P, Giri R, Kaul R et al. Studies on pitting corrosion and sensitization in laser rapid manufactured specimens of type 316L stainless steel[J]. Materials & Design, 39, 509-521(2012).

    [4] Trelewicz J R, Halada G P, Donaldson O K et al. Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel[J]. JOM, 68, 850-859(2016).

    [5] Dong Q, Li Y H, Guan H et al. Nano-indentation and finite element simulation study on the elastic-plastic properties of 316L stainless steel by laser cladding[J]. Journal of Plasticity Engineering, 24, 128-133(2017).

    [6] Ding X B, Sun H, Yu G J et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF[J]. Journal of Chinese Society for Corrosion and Protection, 35, 543-548(2015).

    [7] Guo X. Microstructure, tensile properties and toughening mechanism of warm and cold rolling 304 and 316L stainless steels with aluminum[D]. Lanzhou: Lanzhou University of Technology, 18-20(2019).

    [8] Colaço R, Pina C, Vilar R. Influence of the processing conditions on the abrasive wear behaviour of a laser surface melted tool steel[J]. Scripta Materialia, 41, 715-721(1999).

    [9] Zhang H C. Fatigue crack propagation behavior and wear performance of laser remelted 40Cr steel[D]. Changchun: Jilin University, 30-35(2019).

    [10] Tran V N, Yang S, Phung T A. Microstructure and properties of Cu/TiB2 wear resistance composite coating on H13 steel prepared by in situ laser cladding[J]. Optics & Laser Technology, 108, 480-486(2018).

    [11] Lin X, Cao Y Q, Wang Z T et al. Regular eutectic and anomalous eutectic growth behavior in laser remelting of Ni-30wt%Sn alloys[J]. Acta Materialia, 126, 210-220(2017).

    [12] Zhang T, Fan Q, Ma X L et al. Effect of laser remelting on microstructural evolution and mechanical properties of Ti-35Nb-2Ta-3Zr alloy[J]. Materials Letters, 253, 310-313(2019).

    [13] Zhou S F, Xu Y B, Liao B Q et al. Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding[J]. Optics & Laser Technology, 103, 8-16(2018).

    [14] Li Y H, Arthanari S, Guan Y C. Influence of laser surface melting on the properties of MB26 and AZ80 magnesium alloys[J]. Surface and Coatings Technology, 378, 124964(2019).

    [15] Zhang X Y, Zou Y, Zeng X L. Effect of laser surface remelting on the corrosion resistance of 316L orthodontic brackets[J]. International Journal of Electrochemical Science, 11, 2877-2886(2016).

    [16] Chikarakara E, Naher S, Brabazon D. Spinodal decomposition in AISI 316L stainless steel via high-speed laser remelting[J]. Applied Surface Science, 302, 318-321(2014).

    [17] ZbigniewB, BonekM, Dobrzański LA, et al., 2010, 654/655/656: 2511- 2514.

    [18] Saeidi K, Gao X, Lofaj F et al. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting[J]. Journal of Alloys and Compounds, 633, 463-469(2015).

    [19] Duan X X, Gao S Y, Dong Q et al. Reinforcement mechanism and wear resistance of Al2O3/Fe-Cr-Mo steel composite coating produced by laser cladding[J]. Surface and Coatings Technology, 291, 230-238(2016).

    [20] Lin X, Yang H O, Chen J et al. Microstructure evolution of 316L stainless steel during laser rapid forming[J]. Acta Metallurgica Sinica, 42, 361-368(2006).

    [21] Ganesh P, Kaul R, Sasikala G et al. Fatigue crack propagation and fracture toughness of laser rapid manufactured structures of AISI 316L stainless steel[J]. Metallography, Microstructure, and Analysis, 3, 36-45(2014).

    Hongpeng Li, Jinma Sheng, Bin Li, Jiang Chang, Yujiao Zhang. Microstructures and Properties of Laser Surface-Reinforced 316L Stainless Steel[J]. Laser & Optoelectronics Progress, 2020, 57(19): 191601
    Download Citation