• Journal of Innovative Optical Health Sciences
  • Vol. 18, Issue 2, 2443001 (2025)
Jiawei Long1,*, Zheng Liang1, Yihang Tu2, Shimeng Xie1..., Lin Huang1,3,** and En Li1,***|Show fewer author(s)
Author Affiliations
  • 1School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Xiyuan Ave, No. 2006, Chengdu 611731,  P. R. China
  • 2School of Electronic Information and Electrical Engineering, Chengdu University Chengluo Avenue, No. 2025, Chengdu 610106,  P. R. China
  • 3Center for Information in Medicine, University of Electronic and Technology of China, Xiyuan Ave No. 2006, Chengdu 611731,  P. R. China
  • show less
    DOI: 10.1142/S1793545824430016 Cite this Article
    Jiawei Long, Zheng Liang, Yihang Tu, Shimeng Xie, Lin Huang, En Li. Polarimetric thermoacoustic imaging[J]. Journal of Innovative Optical Health Sciences, 2025, 18(2): 2443001 Copy Citation Text show less
    References

    [1] Y. Lu, B. Li, J. Xu, J. Yu. Dielectric properties of human glioma and surrounding tissue. Int. J. Hyperthermia, 8, 755(1992). https://doi.org/10.3109/02656739209005023

    [2] L. Liu, W. Dong, X. Ji et al. A new method of noninvasive brain-edema monitoring in stroke: Cerebral electrical impedance measurement. Neurol. Res., 28, 31(2006). https://doi.org/10.1179/016164106X91843

    [3] A. G. Bell. Upon the production and reproduction of sound by light. J. Soc. Telegraph Eng., 9, 404(1880). https://doi.org/10.1049/jste-1.1880.0046

    [4] R. A. Kruger, K. D. Miller, H. E. Reynolds et al. Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz — feasibility study. Radiology, 216, 279(2000). https://doi.org/10.1148/radiology.216.1.r00jl30279

    [5] L. Huang, L. Yao, L. Liu, J. Rong, H. Jiang. Quantitative thermoacoustic tomography: Recovery of conductivity maps of heterogeneous media. Appl. Phys. Lett., 101, 244106(2012). https://doi.org/10.1063/1.4772484

    [6] X. Wang, T. Qin, Y. Qin, R. S. Witte, H. Xin. Microwave-induced thermoacoustic communications. IEEE Trans. Microw. Theory Techn., 65, 3369(2017). https://doi.org/10.1109/TMTT.2017.2669970

    [7] Z. Ji, C. Lou, S. Yang, D. Xing. Three-dimensional thermoacoustic imaging for early breast cancer detection. Med. Phys., 39, 6738(2012). https://doi.org/10.1118/1.4757923

    [8] K. Haixin, L. Changjun, V. W. Lihong, N. E. Todd, J. Ladislav. Performance characterization of an integrated ultrasound, photoacoustic, and thermoacoustic imaging system. J. Biomed. Opt., 17, 1(2012). https://doi.org/10.1117/1.JBO.17.5.056010

    [9] Z. Yan, Y. Bo, S. Qiqi et al. Label-free invivo imaging of human leukocytes using two-photon excited endogenous fluorescence. J. Biomed. Opt., 18, 1(2013). https://doi.org/10.1117/1.JBO.18.4.040504

    [10] M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, V. Ntziachristos. Near-field thermoacoustic imaging with transmission line pulsers. Med. Phys., 39, 4460(2012). https://doi.org/10.1118/1.4729710

    [11] B. Wang, Z. Zhao, S. Liu, Z. Nie, Q. Liu. Mitigating acoustic heterogeneous effects in micro-induced breast thermoacoustic tomography using multi-physical K-means clustering. Appl. Phys. Lett., 111, 223701(2017). https://doi.org/10.1063/1.5008839

    [12] P. W. Nicholson. Specific impedance of cerebral white matter. Exp. Neurol., 13, 386(1965). https://doi.org/10.1016/0014-4886(65)90126-3

    [13] Y. Qu, L. Li, Y. Shen et al. Dichroism-sensitive photoacoustic computed tomography. Optica, 5, 495(2018). https://doi.org/10.1364/OPTICA.5.000495

    [14] D. M. Pozar. Microwave Power Dissipation. John Wiley & Sons, 11(2011).

    [15] Y. He, Y. Shen, X. Feng, C. Liu, L. V. Wang. Homogenizing microwave illumination in thermoacoustic tomography by a linear-to-circular polarizer based on frequency selective surfaces. Appl. Phys. Lett., 111, 063703(2017). https://doi.org/10.1063/1.4993942

    [16] Y. He, C. Liu, L. Lin, L. V. Wang. Comparative effects of linearly and circularly polarized illumination on microwave-induced thermoacoustic tomography. Antennas Wirel. Propag. Lett., 16, 1593(2017). https://doi.org/10.1109/LAWP.2017.2652853

    [17] E. D. Evans. An analysis of a coupled-ring rotary joint design. IEEE Trans. Microw. Theory Techni., 40, 577(1992). https://doi.org/10.1109/22.121738

    [18] R. L. Eisenhart. A novel wideband TM01-to-TE11 mode converter, 249-252(1998). https://doi.org/10.1109/MWSYM.1998.689367

    [19] B. Deng, H.-L. Zhang, M. Hu. An analysis of circular waveguide rotary Joint design with coupling TM01 mode, 1224-1227(2011). https://doi.org/10.1109/CIE-Radar.2011. 6159776

    [20] V. I. Abramov, P. Hun-Joong, K. Dong-Hyun, L. Tae-Hyung. U-style rotary joint with E/sub 01/mode for millimeter waves, 1879-1882(2004). https://doi.org/10.1109/MWSYM.2004.1338974

    [21] D. M. Pozar. Microwave Resonators. John Wiley & Sons, Hoboken, 272(2011).

    [22] X. Wang, D. R. Bauer, J. L. Vollin et al. Impact of microwave pulses on thermoacoustic imaging applications. Antennas Wirel. Propag. Lett., 11, 1634(2012). https://doi.org/10.1109/LAWP.2013.2237743

    [23] X. Wang, L. Huang, Z. Chi, H. Jiang. Integrated thermoacoustic and ultrasound imaging based on the combination of a hollow concave transducer array and a linear transducer array. Phys. Med. Biol., 66, 115011(2021). https://doi.org/10.1088/1361-6560/abfc91

    [24] Y. H. Tang, Z. Zheng, S. M. Xie, L. Huang, H. B. Jiang. Thermoacoustic imaging based on noise suppression of multi-channel amplifier and additive circuit. Acta Phys. Sin., 69, 240701(2020). https://doi.org/10.7498/aps.69.20201036

    [25] Y. Liang, J.-W. Liu, L. Wang, L. Jin, B.-O. Guan. Noise-reduced optical ultrasound sensor via signal duplication for photoacoustic microscopy. Opt. Lett., 44, 2665(2019). https://doi.org/10.1364/OL.44.002665

    Jiawei Long, Zheng Liang, Yihang Tu, Shimeng Xie, Lin Huang, En Li. Polarimetric thermoacoustic imaging[J]. Journal of Innovative Optical Health Sciences, 2025, 18(2): 2443001
    Download Citation