• Opto-Electronic Engineering
  • Vol. 44, Issue 8, 757 (2017)
Fei Qin1, Xiangping Li1, and Minghui Hong2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.08.001 Cite this Article
    Fei Qin, Xiangping Li, Minghui Hong. From super-oscillatory lens to super-critical lens: surpassing the diffraction limit via light field modulation[J]. Opto-Electronic Engineering, 2017, 44(8): 757 Copy Citation Text show less
    References

    [1] Abbe E. A contribution to the theory of the microscope and the nature of microscopic vision[C]//Proceedings of the Bristol Naturalists' Society, 1874, 1: 200–261.

    [2] Lord Rayleigh F R S. XII. On the manufacture and theory of diffraction-gratings[J]. Philosophical Magazine, 1874, 47(310): 81–93.

    [3] Airy G B. On the diffraction of an object-glass with circular aperture[J]. Transactions of the Cambridge Philosophical Society, 1835, 5: 283–291.

    [4] Hao Xiang, Kuang Cuifang, Gu Zhaotai, et al. From micros-copy to nanoscopy via visible light[J]. Light Science & Ap-plications, 2013, 2: e108.

    [5] Schmidt D A, Kopf I, Bründermann E. A matter of scale: from far-field microscopy to near-field nanoscopy[J]. Laser & Photonics Reviews, 2012, 6(3): 296–332.

    [6] Zeng Zhipeng, Xi Peng. Advances in three-dimensional super-resolution nanoscopy[J]. Microscopy Research and Technique, 2016, 79(10): 893–898.

    [7] Hell S W. Toward fluorescence nanoscopy[J]. Nature Bio-technology, 2003, 21(11): 1347–1355.

    [8] Hell S W. Far-field optical nanoscopy[J]. Science, 2007, 316(5828): 1153–1158.

    [9] Wang H, Sheppard C J R, Ravi K, et al. Fighting against diffraction: apodization and near field diffraction structures[J]. Laser & Photonics Reviews, 2012, 6(3): 354–392.

    [10] Xie Xiangsheng, Chen Yongzhu, Yang Ken, et al. Harnessing the point-spread function for high-resolution far-field optical microscopy[J]. Physical Review Letters, 2014, 113(26): 263901.

    [11] Yang Xusan, Xie Hao, Alonas E, et al. Mirror-enhanced super-resolution microscopy[J]. Light: Science & Applications, 2016, 5: e16134.

    [12] Wang Wenhui, Gu Junnan, He Ting, et al. Optical su-per-resolution microscopy and its applications in nano-catalysis[J]. Nano Research, 2015, 8(2): 441–455.

    [13] Synge E H. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1928, 6(35): 356–362.

    [14] Betzig E, Lewis A, Harootunian A, et al. Near field scanning optical microscopy (NSOM)[J]. Biophysical Journal, 1986, 49(1): 269–279.

    [15] Bek A, Vogelgesang R, Kern K. Apertureless scanning near field optical microscope with sub-10nm resolution[J]. Review of Scientific Instruments, 2006, 77(4): 043703.

    [16] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966–3969.

    [17] Liu Zhaowei, Durant S, Lee H, et al. Far-field optical super-lens[J]. Nano Letters, 2007, 7(2): 403–408.

    [18] Zhang Xiang, Liu Zhaowei. Superlenses to overcome the diffraction limit[J]. Nature Materials, 2008, 7(6): 435–441.

    [19] Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing[J]. Nature Photonics, 2009, 3(7): 388–394.

    [20] Fang N, Lee H, Sun Cheng, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534–537.

    [21] Taubner T, Korobkin D, Urzhumov Y, et al. Near-field mi-croscopy through a SiC superlens[J]. Science, 2006, 313(5793): 1595.

    [22] Wang Zengbo, Guo Wei, Li Lin, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218.

    [23] Yan Yinzhou, Li Lin, Feng Chao, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809–1816.

    [24] Allen K W, Farahi N, Li Yangcheng, et al. Super-resolution microscopy by movable thin-films with embedded micro-spheres: Resolution analysis[J]. Annalender Physik, 2015, 527(7–8): 513–522.

    [25] Lee S, Li Lin, Wang Zengbo, et al. Immersed transparent microsphere magnifying sub-diffraction-limited objects[J]. Applied Optics, 2013, 52(30): 7265–7270.

    [26] Darafsheh A, Walsh G F, Dal Negro L, et al. Optical su-per-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters, 2012, 101(14): 141128.

    [27] Li Lin, Guo Wei, Yan Yinzhou, et al. Label-free su-per-resolution imaging of adenoviruses by submerged mi-crosphere optical nanoscopy[J]. Light: Science & Applications, 2013, 2: e104.

    [28] Yang Hui, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862–4870.

    [29] Allen K W, Farahi N, Li Yangcheng, et al. Overcoming the diffraction limit of imaging nanoplasmonic arrays by micro-spheres and microfibers[J]. Optics Express, 2015, 23(19): 24484–24496.

    [30] Wu M X, Huang B J, Chen R, et al. Modulation of photonic nanojets generated by microspheres decorated with con-centric rings[J]. Optics Express, 2015, 23(15): 20096–20103.

    [31] Wu Mengxue, Chen Rui, Ling Jinzhong, et al. Creation of a longitudinally polarized photonic nanojet via an engineered microsphere[J]. Optics Letters, 2017, 42(7): 1444–1447.

    [32] Fan Wen, Yan Bing, Wang Zengbo, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwave-length imaging at visible frequencies[J]. Science Advances, 2016, 2(8): e1600901.

    [33] Li Jinxing, Liu Wenjuan, Li Tianlong, et al. Swimming micro-robot optical nanoscopy[J]. Nano Letters, 2016, 16(10): 6604–6609.

    [34] Luk’yanchuk B S, Paniagua-Domínguez R, Minin I, et al. Refractive index less than two: photonic nanojets yesterday, today and tomorrow[J]. Optical Materials Express, 2017, 7(6): 1820–1847.

    [35] Liu Hong, Wang Bing, Ke Lin, et al. High aspect subdiffrac-tion-limit photolithography via a silver superlens[J]. Nano Letters, 2012, 12(3): 1549–1554.

    [36] Liu Hong, Wang Bing, Ke Lin, et al. High contrast superlens lithography engineered by loss reduction[J]. Advanced Functional Materials, 2012, 22(18): 3777–3783.

    [37] Srituravanich W, Fang N, Sun Cheng, et al. Plasmonic nanolithography[J]. Nano Letters, 2004, 4(6): 1085–1088.

    [38] Liu Zhaowei, Wei Qihuo, Zhang Xiang. Surface plasmon interference nanolithography[J]. Nano Letters, 2005, 5(5): 957–961.

    [39] Luo Xiangang, Ishihara T. Surface plasmon resonant inter-ference nanolithography technique[J]. Applied Physics Let-ters, 2004, 84(23): 4780.

    [40] Gao Ping, Yao Na, Wang Changtao, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plas-monic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110.

    [41] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82–87.

    [42] Gustafsson M G L. Nonlinear structured-illumination micros-copy: Wide-field fluorescence imaging with theoretically un-limited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081–13086.

    [43] Allen J R, Ross S T, Davidson M W. Structured illumination microscopy for superresolution[J]. Chemphyschem, 2014, 15(4): 566–576.

    [44] Rust M J, Bates M, Zhuang Xiaowei. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793–796.

    [45] Bates M, Huang Bo, Dempsey G T, et al. Multicolor su-per-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845): 1749–1753.

    [46] Huang Bo, Wang Wenqin, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810–813.

    [47] Dempsey G T, Bates M, Kowtoniuk W E, et al. Photoswitching mechanism of cyanine dyes[J]. Journal of the American Chemical Society, 2009, 131(151): 18192–18193.

    [48] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642–1645.

    [49] Shroff H, Galbraith C G, Galbraith J A, et al. Live-cell photo-activated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 2008, 5(5): 417–423.

    [50] Planchon T A, Gao Liang, Milkie D E, et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination[J]. Nature Methods, 2011, 8(5): 417–423.

    [51] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluo-rescence microscopy[J]. Optics Letters, 1994, 19(11): 780–782.

    [52] Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935–939.

    [53] Bretschneider S, Eggeling C, Hell S W. Breaking the diffrac-tion barrier in fluorescence microscopy by optical shelving[J]. Physical Review Letters, 2007, 98(21): 218103.

    [54] Willig K I, Harke B, Medda R, et al. STED microscopy with continuous wave beams[J]. Nature Methods, 2007, 4(11): 915–918.

    [55] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3(3): 144–147.

    [56] Grotjohann T, Testa I, Leutenegger M, et al. Diffrac-tion-unlimited all-optical imaging and writing with a photo-chromic GFP[J]. Nature, 2011, 478(7368): 204–208.

    [57] Berning S, Willig K I, Steffens H, et al. Nanoscopy in a living mouse brain[J]. Science, 2012, 335(6068): 551.

    [58] Hanne J, Falk H J, G rlitz F, et al. STED nanoscopy with fluorescent quantum dots[J]. Nature Communications, 2015, 6: 7127.

    [59] Hell S W, Sahl S J, Bates M, et al. The 2015 super-resolution microscopy roadmap[J]. Journal of Physics D: Applied Physics, 2015, 48(44): 443001.

    [60] Di Francia G T. Super-gain antennas and optical resolving power[J]. Nuovo Cimento, 1952, 9(S3): 426–438.

    [61] Liu Tao, Tan Jiubin, Liu Jian, et al. Creation of subwavelength light needle, equidistant multi-focus, and uniform light tun-nel[J]. Journal of Modern Optics, 2013, 60(5): 378–381.

    [62] Liu Tao, Shen Tong, Yang Shuming, et al. Subwavelength focusing by binary multi-annular plates: design theory and experiment[J]. Journal of Optics, 2015, 17(3): 035610.

    [63] Liu Tao, Liu Jian, Zhang He, et al. Efficient optimization of super-oscillatory lens and transfer function analysis in con-focal scanning microscopy[J]. Optics Communications, 2014, 319: 31–35.

    [64] Sheppard C J R, Choudhury A. Annular pupils, radial polari-zation, and superresolution[J]. Applied Optics, 2004, 43(22): 4322–4327.

    [65] Davis B J, Karl W C, Swan A K, et al. Capabilities and limita-tions of pupil-plane filters for superresolution and image enhancement[J]. Optics Express, 2004, 12(17): 4150–4156.

    [66] Huang Kun, Li Yongping. Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system[J]. Optics Letters, 2011, 36(18): 3536–3538.

    [67] Huang Kun, Shi Peng, Kang Xueliang, et al. Design of DOE for generating a needle of a strong longitudinally polarized field[J]. Optics Letters, 2010, 35(7): 965–967.

    [68] Wang Haifeng, Shi Luping, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2008, 2(8): 501–505.

    [69] Berry M V. Exact nonparaxial transmission of subwavelength detail using superoscillations[J]. Journal of Physics A: Mathematical and Theoretical, 2013, 46(20): 205203.

    [70] Berry M V, Popescu S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A: Mathematical and Theoretical, 2006, 39(22): 6965–6977.

    [71] Huang Fumin, Zheludev N, Chen Yifang, et al. Focusing of light by a nanohole array[J]. Applied Physics Letters, 2007, 90(9): 091119.

    [72] Roy T, Rogers E T F, Yuan Guanghui, et al. Point spread function of the optical needle super-oscillatory lens[J]. Applied Physics Letters, 2014, 104(23): 231109.

    [73] Huang Fumin, Chen Yifang, de Abajo F J G, et al. Optical super-resolution through super-oscillations[J]. Journal of Op-tics A: Pure and Applied Optics, 2007, 9(9): S285–S288.

    [74] Rogers E T F, Zheludev N I. Optical super-oscillations: sub-wavelength light focusing and super-resolution imag-ing[J]. Journal of Optics, 2013, 15(9): 094008.

    [75] Rogers E T F, Savo S, Lindberg J, et al. Super-oscillatory optical needle[J]. Applied Physics Letters, 2013, 102(3): 031108.

    [76] Yuan Guanghui, Rogers E T F, Zheludev N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light: Science & Applications, 2017, 6: e17036.

    [77] Yuan Guanghui, Vezzoli S, Altuzarra C, et al. Quantum su-per-oscillation of a single photon[J]. Light: Science & Appli-cations, 2016, 5: e16127.

    [78] Huang Fumin, Kao T S, Fedotov V A, et al. Nanohole array as a lens[J]. Nano Letters, 2008, 8(8): 2469–2472.

    [79] Huang Fumin, Zheludev N I. Super-resolution without eva-nescent waves[J]. Nano Letters, 2009, 9(3): 1249–1254.

    [80] Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432–435.

    [81] Wang Qian, Rogers E T F, Gholipour B, et al. Optically re-configurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2015, 10(1): 60–65.

    [82] Zheludev N I. What diffraction limit [J]. Nature Materials, 2008, 7(6): 420–422.

    [83] Roy T, Rogers E T F, Zheludev N I. Sub-wavelength focusing meta-lens[J]. Optics Express, 2013, 21(6): 7577–7582.

    [84] Yuan Guanghui, Rogers E T F, Roy T, et al. Planar su-per-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Scientific Reports, 2014, 4: 6333.

    [85] Huang Kun, Ye Huapeng, Teng Jinghua, et al. Optimiza-tion-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 2014, 8(1): 152–157.

    [86] Ye Huapeng, Qiu Chengwei, Huang Kun, et al. Creation of a longitudinally polarized subwavelength hotspot with an ul-tra-thin planar lens: vectorial Rayleigh–Sommerfeld method[J]. Laser Physics Letters, 2013, 10(6): 065004.

    [87] Qin Fei, Huang Kun, Wu Jianfeng, et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials, 2017, 29(8): 1602721.

    [88] Wang Jun, Qin Fei, Zhang Daohua, et al. Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate[J]. Applied Physics Letters, 2013, 102(6): 061103.

    [89] Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ul-trabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713–719.

    [90] Qin Fei, Hong Minghui. Breaking the diffraction limit in far field by planar Metalens[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(4): 044231.

    [91] Qin Fei, Huang Kun, Wu Jianfeng, et al. Shaping a sub-wavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports, 2015, 5: 9977.

    [92] Wang Changtao, Tang Dongliang, Wang Yanqin, et al. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Scientific Reports, 2015, 5: 18485.

    [93] Richards B, Wolf E. Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic sys-tem[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 358–379.

    [94] Lerman G M, Yanai A, Levy U. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light[J]. Nano Letters, 2009, 9(5): 2139–2143.

    [95] Wilson T, Massoumian F, Ju kaitis R. Generation and focusing of radially polarized electric fields[J]. Optical Engineering, 2003, 42(11): 3088–3089.

    [96] Huang Kun, Shi Peng, Cao G W, et al. Vector-vortex Bes-sel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6): 888–890.

    [97] Li Xiangping, Cao Yaoyu, Gu Min. Superresolution-focal-vol-ume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13): 2510–2512.

    [98] Li Xiangping, Venugopalan P, Ren Haoran, et al. Su-per-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam[J]. Optics Letters, 2014, 39(20): 5961–5964.

    [99] Zhan Qiwen. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Pho-tonics, 2009, 1(1): 1–57.

    [100] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77–87.

    [101] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901.

    [102] Liu Hong, Mehmood M Q, Huang Kun, et al. Twisted focusing of optical vortices with broadband flat spiral zone plates[J]. Advanced Optical Materials, 2014, 2(12): 1193–1198.

    [103] Huang Kun, Liu Hong, Garcia-Vidal F J, et al. Ultra-high-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6: 7059.

    [104] Wang Sicong, Li Xiangping, Zhou Jianying, et al. Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics[J]. Optics Letters, 2014, 39(17): 5022–5025.

    [105] Chen Gang, Wu Zhixiang, Yu Anping, et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Scientific Reports, 2016, 6: 37776.

    [106] Yu Anping, Chen Gang, Zhang Zhihai, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radi-ally polarized light with binary phase lens[J]. Scientific Reports, 2016, 6: 38859.

    [107] Qin Fei, Ding Lu, Zhang Lei, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1): e1501168.

    [108] Zhang Lei, Mei Shengtao, Huang Kun, et al. Advances in full control of electromagnetic waves with metasurfaces[J]. Ad-vanced Optical Materials, 2016, 4(6): 818–833.

    [109] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932– 4936.

    [110] Devlin R C, Khorasaninejad M, Chen Weiting, et al. Broad-band high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proceedings of the National Academy of Sci-ences of the United States of America, 2016, 113(38): 10473–10478.

    [111] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achro-matic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342–1345.

    [112] Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194.

    [113] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337.

    [114] Shen Yue, Luo Xiangang. Efficient bending and focusing of light beam with all-dielectric subwavelength structures[J]. Optics Communications, 2016, 366: 174–178.

    [115] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & As-tronomy, 2015, 58(9): 594201.

    [116] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momen-tum[J]. Science Advances, 2015, 1(9): e1500396.

    [117] Zhao Xiaonan, Hu Jingpei, Lin Yu, et al. Ultra-broadband achromatic imaging with diffractive photon sieves[J]. Scientific Reports, 2016, 6: 28319.

    Fei Qin, Xiangping Li, Minghui Hong. From super-oscillatory lens to super-critical lens: surpassing the diffraction limit via light field modulation[J]. Opto-Electronic Engineering, 2017, 44(8): 757
    Download Citation