• Opto-Electronic Engineering
  • Vol. 45, Issue 9, 170669 (2018)
Wang Shuai, Wang Bin, Liu Qingwen, Du Jiangbing, Fan Xinyu, and He Zuyuan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2018.170669 Cite this Article
    Wang Shuai, Wang Bin, Liu Qingwen, Du Jiangbing, Fan Xinyu, He Zuyuan. Advances of key technologies on optical reflectometry with ultra-high spatial resolution[J]. Opto-Electronic Engineering, 2018, 45(9): 170669 Copy Citation Text show less
    References

    [1] Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics[J]. Applied Optics, 1976, 15(9): 2112–2115.

    [2] Liokumovich L B, Ushakov N A, Kotov O I, et al. Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions[ J]. Journal of Lightwave Technology, 2015, 33(17): 3660–3671.

    [3] Martins H F, Martín-López S, Corredera P, et al. Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over > 100 km[J]. Journal of Lightwave Technology, 2014, 32(8): 1510–1518.

    [4] Martins H F, Martin-Lopez S, Corredera P, et al. Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves[J]. Journal of Lightwave Technology, 2013, 31(23): 3631–3637.

    [5] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single‐mode fiber[J]. Applied Physics Letters, 1981, 39(9): 693–695.

    [6] Takada K, Yokohama I, Chida K, et al. New measurement system for fault location in optical waveguide devices based on an interferometric technique[J]. Applied Optics, 1987, 26(9): 1603–1606.

    [7] Soller B J, Gifford D K, Wolfe M S, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 2005, 13(2): 666–674.

    [8] Bethea C G, Levine B F, Cova S, et al. High-resolution and high-sensitivity optical-time-domain reflectometer[J]. Optics Letters, 1988, 13(3): 233–235.

    [9] Legré M, Thew R, Zbinden H, et al. High resolution optical time domain reflectometer based on 1.55 μm up-conversion photon- counting module[J]. Optics Express, 2007, 15(13): 8237–8242.

    [10] Shentu G L, Sun Q C, Jiang X, et al. 217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector[J]. Optics Express, 2013, 21(21): 24674–24679.

    [11] Zhao Q Y, Hu J H, Zhang X P, et al. Photon-counting optical time-domain reflectometry with superconducting nanowire single- photon detectors[C]//Proceedings of the IEEE 14th International Superconductive Electronics Conference (ISEC), 2013: 1–3.

    [12] Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1636–1638.

    [13] Wang Z N, Fan M Q, Zhang L, et al. Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source[J]. Optics Express, 2015, 23(12): 15514–15520.

    [14] Zhang L M, Pan B W, Chen G C, et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser[J]. Applied Optics, 2017, 56(4): 1253–1256.

    [15] Wang S, Fan X Y, Liu Q W, et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 2015, 23(26): 33301–33309.

    [16] Liu Q W, Fan X Y, He Z Y. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 2015, 23(20): 25988–25995.

    [17] Wang B, Fan X Y, Wang S, et al. Millimeter-resolution long-range OFDR using ultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process[J]. Optics Express, 2017, 25(4): 3514–3524.

    [18] Wang S, Fan X Y, He Z Y. Ultrahigh resolution optical reflectometry based on linear optical sampling technique with digital dispersion compensation[J]. IEEE Photonics Journal, 2017, 9(6): 6804710.

    [19] Wang S, Fan X Y, Wang B, et al. Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications[J]. Optics Express, 2017, 25(9): 10224–10233.

    [20] Koshikiya Y, Fan X Y, Ito F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology, 2008, 26(18): 3287–3294.

    [21] Fan X Y, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency-domain reflectometry[J]. IEEE Journal of Quantum Electronics, 2009, 45(6): 594–602.

    [22] Dorrer C, Kilper D C, Stuart H R, et al. Linear optical sampling[ J]. IEEE Photonics Technology Letters, 2003, 15(12): 1746–1748.

    Wang Shuai, Wang Bin, Liu Qingwen, Du Jiangbing, Fan Xinyu, He Zuyuan. Advances of key technologies on optical reflectometry with ultra-high spatial resolution[J]. Opto-Electronic Engineering, 2018, 45(9): 170669
    Download Citation