• Laser & Optoelectronics Progress
  • Vol. 59, Issue 18, 1800001 (2022)
Bo Cao1、2, Huiqun Cao3、*, Danying Lin1, Junle Qu1, and Bin Yu1、**
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 2College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 3College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong , China
  • show less
    DOI: 10.3788/LOP202259.1800001 Cite this Article Set citation alerts
    Bo Cao, Huiqun Cao, Danying Lin, Junle Qu, Bin Yu. Research Progress of Double-Helix Point Spread Function Engineering and Its Application[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1800001 Copy Citation Text show less
    References

    [1] Pan Y, Ding J P, Wang H T. Manipulation on novel vector optical fields: introduction, advances and applications[J]. Acta Optica Sinica, 39, 0126001(2019).

    [2] Zhou Y, Li R Z, Yu X H et al. Progress in study and application of optical field modulation technology based on liquid crystal spatial light modulators[J]. Acta Photonica Sinica, 50, 1123001(2021).

    [3] Zhang X C, Lü J G, Zhang C et al. Multiple bottle beams based on metasurface light field control[J]. Chinese Journal of Lasers, 48, 2105001(2021).

    [4] Bekshaev A Y, Soskin M S, Vasnetsov M V. Angular momentum of a rotating light beam[J]. Optics Communications, 249, 367-378(2005).

    [5] Schechner Y Y, Piestun R, Shamir J. Wave propagation with rotating intensity distributions[J]. Physical Review E, 54, R50-R53(1996).

    [6] Piestun R, Schechner Y Y, Shamir J. Self-imaging with finite energy[J]. Optics Letters, 22, 200-202(1997).

    [7] Piestun R, Shamir J. Generalized propagation-invariant wave fields[J]. Journal of the Optical Society of America A, 15, 3039-3044(1998).

    [8] Piestun R, Schechner Y Y, Shamir J. Propagation-invariant wave fields with finite energy[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17, 294-303(2000).

    [9] Greengard A, Schechner Y Y, Piestun R. Depth from diffracted rotation[J]. Optics Letters, 31, 181-183(2006).

    [10] Pavani S R P, Piestun R. High-efficiency rotating point spread functions[J]. Optics Express, 16, 3484-3489(2008).

    [11] Quirin S, Piestun R. Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions[J]. Applied Optics, 52, A367-A376(2012).

    [12] Grover G, Pavani S R P, Piestun R. Performance limits on three-dimensional particle localization in photon-limited microscopy[J]. Optics Letters, 35, 3306-3308(2010).

    [13] Pavani S R P, DeLuca J G, Piestun R. Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system[J]. Optics Express, 17, 19644-19655(2009).

    [14] Pavani S R P, Piestun R. Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system[J]. Optics Express, 16, 22048-22057(2008).

    [15] Pavani S R P, Greengard A, Piestun R. Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system[J]. Applied Physics Letters, 95, 021103(2009).

    [16] Pavani S R P, Thompson M A, Biteen J S et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 2995-2999(2009).

    [17] Pavani S R P, Piestun R. 3D microscopy with a double-helix point spread function[J]. Proceedings of SPIE, 7184, 71840I(2009).

    [18] Jin C Q, Zhang J H, Guo C L. Metasurface integrated with double-helix point spread function and metalens for three-dimensional imaging[J]. Nanophotonics, 8, 451-458(2019).

    [19] Grover G, DeLuca K, Quirin S et al. Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE)[J]. Optics Express, 20, 26681-26695(2012).

    [20] Smith C S, Joseph N, Rieger B et al. Fast, single-molecule localization that achieves theoretically minimum uncertainty[J]. Nature Methods, 7, 373-375(2010).

    [21] Baránek M, Bouchal Z. Optimizing the rotating point spread function by SLM aided spiral phase modulation[J]. Proceedings of SPIE, 9441, 161-170(2014).

    [22] Li H F, Yun X, Zhang Y H et al. Optimization of Fresnel-zones-based double helix point spread function and measurement of particle diffusion coefficient[J]. Optics Communications, 502, 127411(2022).

    [23] Jin C Q, Afsharnia M, Berlich R et al. Dielectric metasurfaces for distance measurements and three-dimensional imaging[J]. Advanced Photonics, 1, 036001(2019).

    [24] Colburn S, Majumdar A. Metasurface generation of paired accelerating and rotating optical beams for passive ranging and scene reconstruction[J]. ACS Photonics, 7, 1529-1536(2020).

    [25] Berlich R, Bräuer A, Stallinga S. Single shot three-dimensional imaging using an engineered point spread function[J]. Optics Express, 24, 5946-5960(2016).

    [26] Wang Z J, Cai Y N, Liang Y S et al. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function[J]. Biomedical Optics Express, 8, 5493-5506(2017).

    [27] Dupont A, Lamb D C. Nanoscale three-dimensional single particle tracking[J]. Nanoscale, 3, 4532-4541(2011).

    [28] Thompson M A, Lew M D, Badieirostami M et al. Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function[J]. Nano Letters, 10, 211-218(2010).

    [29] Thompson M A, Casolari J M, Badieirostami M et al. Three-dimensional tracking of single mRNA particles in saccharomyces cerevisiae using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 17864-17871(2010).

    [30] Wang D P, Agrawal A, Piestun R et al. Enhanced information content for three-dimensional localization and tracking using the double-helix point spread function with variable-angle illumination epifluorescence microscopy[J]. Applied Physics Letters, 110, 211107(2017).

    [31] Gahlmann A, Moerner W E. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging[J]. Nature Reviews Microbiology, 12, 9-22(2014).

    [32] Lew M D, Thompson M A, Badieirostami M et al. In vivo three-dimensional superresolution fluorescence tracking using a double-helix point spread function[J]. Proceedings of SPIE, 7571, 75710Z(2010).

    [33] Wang D P, Wu H C, Schwartz D K. Three-dimensional tracking of interfacial hopping diffusion[J]. Physical Review Letters, 119, 268001(2017).

    [34] Wu H C, Sarfati R, Wang D P et al. Electrostatic barriers to nanoparticle accessibility of a porous matrix[J]. Journal of the American Chemical Society, 142, 4696-4704(2020).

    [35] Lasker K, von Diezmann L, Zhou X et al. Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus[J]. Nature Microbiology, 5, 418-429(2020).

    [36] Rocha J M, Gahlmann A. Single-molecule tracking microscopy-a tool for determining the diffusive states of cytosolic molecules[J]. Journal of Visualized Experiments, 151, e59387(2019).

    [37] Li H, Chen D N, Xu G X et al. Three dimensional multi-molecule tracking in thick samples with extended depth-of-field[J]. Optics Express, 23, 787-794(2015).

    [38] Chen D N, Yu B, Li H et al. Approach to multiparticle parallel tracking in thick samples with three-dimensional nanoresolution[J]. Optics Letters, 38, 3712-3715(2013).

    [39] Li H F, Wang F M, Wei T D et al. Particles 3D tracking with large axial depth by using the 2π-DH-PSF[J]. Optics Letters, 46, 5088-5091(2021).

    [40] Wang F M, Li H F, Ji L et al. Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function[J]. Applied Optics, 60, 10766-10771(2021).

    [41] Yu B, Yu J, Li W H et al. Nanoscale three-dimensional single particle tracking by light-sheet-based double-helix point spread function microscopy[J]. Applied Optics, 55, 449-453(2016).

    [42] Gustavsson A K, Petrov P N, Lee M Y et al. 3D single-molecule super-resolution microscopy with a tilted light sheet[J]. Nature Communications, 9, 123(2018).

    [43] Wu Y C, FasterShroff H. Faster,shaper,and deeper: structured illumination microscopy for biological imaging[J]. Nature Methods, 15, 1011-1019(2018).

    [44] Sahl S J, Hell S W, Jakobs S. Fluorescence nanoscopy in cell biology[J]. Nature Reviews Molecular Cell Biology, 18, 685-701(2017).

    [45] Zanacchi F C, Lavagnino Z, Donnorso M P et al. Live-cell 3D super-resolution imaging in thick biological samples[J]. Nature Methods, 8, 1047-1049(2011).

    [46] Schermelleh L, Ferrand A, Huser T et al. Super-resolution microscopy demystified[J]. Nature Cell Biology, 21, 72-84(2019).

    [47] Hao X, Yang Q, Kuang C F et al. Optical super-resolution imaging based on frequency shift[J]. Acta Optica Sinica, 41, 0111001(2021).

    [48] Huang B, Wang W Q, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).

    [49] Toprak E, Balci H, Blehm B H et al. Three-dimensional particle tracking via bifocal imaging[J]. Nano Letters, 7, 2043-2045(2007).

    [50] Lee H L D, Sahl S J, Lew M D et al. The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision[J]. Applied Physics Letters, 100, 153701(2012).

    [51] Yoon J, Comerci C J, Weiss L E et al. Revealing nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy[J]. Biophysical Journal, 116, 319-329(2019).

    [52] Bennett H W, Gustavsson A K, Bayas C A et al. Novel fibrillar structure in the inversin compartment of primary cilia revealed by 3D single-molecule superresolution microscopy[J]. Molecular Biology of the Cell, 31, 619-639(2020).

    [53] Alvarez L H, Eisold S, Gumerov R A et al. Deformation of microgels at solid-liquid interfaces visualized in three-dimension[J]. Nano Letters, 19, 8862-8867(2019).

    [54] Nehme E, Freedman D, Gordon R et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning[J]. Nature Methods, 17, 734-740(2020).

    [55] Grover G, Quirin S, Fiedler C et al. Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging[J]. Biomedical Optics Express, 2, 3010-3020(2011).

    [56] Rehman S A, Carr A R, Lenz M O et al. Maximizing the field of view and accuracy in 3D single molecule localization microscopy[J]. Optics Express, 26, 4631-4637(2018).

    [57] Barsic A, Grover G, Piestun R. Three-dimensional super-resolution and localization of dense clusters of single molecules[J]. Scientific Reports, 4, 5388(2014).

    [58] Carr A R, Ponjavic A, Basu S et al. Three-dimensional super-resolution in eukaryotic cells using the double-helix point spread function[J]. Biophysical Journal, 112, 1444-1454(2017).

    [59] Backlund M P, Lew M D, Backer A S et al. The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging[J]. ChemPhysChem, 15, 587-599(2014).

    [60] Sage D, Kirshner H, Pengo T et al. Quantitative evaluation of software packages for single-molecule localization microscopy[J]. Nature Methods, 12, 717-724(2015).

    [61] Shechtman Y, Weiss L E, Backer A S et al. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions[J]. Nano Letters, 15, 4194-4199(2015).

    [62] Lu Q S, Jin L H, Xu Y K. Progress on applications of deep learning in super-resolution microscopy imaging[J]. Laser & Optoelectronics Progress, 58, 2400007(2021).

    [63] Ikoma H, Peng Y F, Broxton M et al. Snapshot multi-PSF 3D single-molecule localization microscopy using deep learning[C], CW3B.3(2020).

    [64] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [65] Schmidt R, Wurm C A, Jakobs S et al. Spherical nanosized focal spot unravels the interior of cells[J]. Nature Methods, 5, 539-544(2008).

    [66] Westphal V, Rizzoli S O, Lauterbach M A et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement[J]. Science, 320, 246-249(2008).

    [67] Bingen P, Reuss M, Engelhardt J et al. Parallelized STED fluorescence nanoscopy[J]. Optics Express, 19, 23716-23726(2011).

    [68] Laporte G P J, Conkey D B, Vasdekis A et al. Double-helix enhanced axial localization in STED nanoscopy[J]. Optics Express, 21, 30984-30992(2013).

    [69] York A G, Parekh S H, Nogare D D et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 9, 749-754(2012).

    [70] Li S W, Wu J J, Li H et al. Rapid 3D image scanning microscopy with multi-spot excitation and double-helix point spread function detection[J]. Optics Express, 26, 23585-23593(2018).

    [71] Wang Z J, Cai Y N, Qian J et al. Hybrid multifocal structured illumination microscopy with enhanced lateral resolution and axial localization capability[J]. Biomedical Optics Express, 11, 3058-3070(2020).

    [72] Jesacher A, Ritsch-Marte M, Piestun R. Three-dimensional information from two-dimensional scans: a scanning microscope with postacquisition refocusing capability[J]. Optica, 2, 210-213(2015).

    [73] Li S W, Lin D Y, Zou X H et al. Mutifocal image scanning microscopy based on double-helix point spread function engineering[J]. Acta Physica Sinica, 70, 038701(2021).

    [74] Xue Y, Berry K P, Boivin J R et al. Scanless volumetric imaging by selective access multifocal multiphoton microscopy[J]. Optica, 6, 76-83(2019).

    [75] Ji N. Adaptive optical fluorescence microscopy[J]. Nature Methods, 14, 374-380(2017).

    [76] Fazal F M, Block S M. Optical tweezers study life under tension[J]. Nature Photonics, 5, 318-321(2011).

    [77] Zhang Y Q, Zhang S S, Min C J et al. Research progress of femtosecond optical tweezers and their applications[J]. Chinese Journal of Lasers, 48, 1918001(2021).

    [78] Liang Y S, Yao B L, Lei M et al. Optical micro-manipulation based on spatial modulation of optical fields[J]. Acta Optica Sinica, 36, 1026003(2016).

    [79] Conkey D B, Trivedi R P, Pavani S R P et al. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions[J]. Optics Express, 19, 3835-3842(2011).

    [80] Zhang S J, Li Y, Liu Z P et al. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum[J]. Applied Physics Letters, 105, 061101(2014).

    [81] Liu L P, Zhang S J, Yang H et al. Fabrication of double-helix microstructures by two-photon polymerization[J]. Chinese Journal of Lasers, 44, 0102006(2017).

    [82] Ni J C, Hu Y L, Liu S L et al. Controllable double-helical microstructures by photonic orbital angular momentum for chiroptical response[J]. Optics Letters, 46, 1401-1404(2021).

    [83] Yang B, Cheng H, Chen S Q et al. Multi-dimensional manipulation of optical field by metasurfaces based on Fourier analysis[J]. Acta Optica Sinica, 39, 0126005(2019).

    Bo Cao, Huiqun Cao, Danying Lin, Junle Qu, Bin Yu. Research Progress of Double-Helix Point Spread Function Engineering and Its Application[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1800001
    Download Citation