[6] Lee H, Hong C, Kim H, et al. Arbitrated quantum signature scheme with message recovery [J]. Phys. Rev. A, 2004, 321: 295-300.
[7] Zhou N R, Zeng G H, Zeng W J, et al. Cross-center quantum identification scheme based on teleportation and entanglement swapping [J]. Opt. Commun., 2005, 254: 380-388.
[8] Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement [J]. Phys. Rev. Lett., 2002, 89: 187902.
[9] Wang J, Zhang Q, Tang C J. Quantum secure direct communication based on order rearrangement of single photons [J]. Phys. Rev. A, 2006, 358: 256-258.
[10] Wang J, Zhang Q, Tang C J. Multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state [J]. Opt. Commun., 2006, 266: 732-737.
[13] Bennet C H, Brassard G. Quantum cryptography: Public-key distribution and tossing [C]. IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 1984.
[14] Bennett C H. Quantum cryptography using any two nonorthogonal states [J]. Phys. Rev. Lett., 1992, 68: 3121-3124.
[15] Ekert A K. Quantum cryptography based on Bell’s theorem [J]. Phys. Rev. Lett., 1991, 67: 66663.
[16] Song D. Secure key distribution by swapping quantum entanglement [J]. Phys. Rev. A, 2004, 69: 034301.
[18] Gao G. Quantum key distribution by comparing Bell states [J]. Opt. commun., 2008, 281: 876-879.
[19] Yuan H, Song J, Han L F, et al. Improving the total efficiency of quantum key distribution by comparing Bell states [J]. Opt. Commun., 2008, 281: 4803-4806.
[20] Nanrun Z, Li J W, Li H G, et al. Quantum deterministic key distribution protocols based on teleportation and entanglement swapping [J]. Opt. Commun., 2011, 284: 4836-4842.
[21] Cinelli C, Barbieri M, Martini F D, et al. Realization of hyperentangled two-photon states [J]. International Journal of Laser Physics, 2005, 15: 124-128.