• Chinese Optics Letters
  • Vol. 19, Issue 1, 011701 (2021)
Halil Arslan* and Bahar Pehlivanoz
Author Affiliations
  • Faculty of Technology, Electrical and Electronics Engineering Department, Sakarya University of Applied Sciences, Sakarya, Turkey
  • show less
    DOI: 10.3788/COL202119.011701 Cite this Article Set citation alerts
    Halil Arslan, Bahar Pehlivanoz. Effect of purification, dehydration, and coagulation processes on the optical parameters of biological tissues[J]. Chinese Optics Letters, 2021, 19(1): 011701 Copy Citation Text show less
    References

    [1] S. L. Jacques. Optical properties of biological tissues: a review. Phys. Med. Biol., 58, R37(2013).

    [2] V. Tuchin. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis(2007).

    [3] M. H. Niemz. Laser-Tissue Interactions: Fundamentals and Applications(2007).

    [4] B. C. Wilson, G. Adam. A Monte Carlo model for the absorption and flux distributions of light in tissue. Med. Phys., 10, 824(1983).

    [5] S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch. A Monte Carlo model of light propagation in tissue. SPIE Inst. Ser., IS 5, 102(1989).

    [6] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D: Appl. Phys., 38, 2543(2005).

    [7] S. C. Gebhart, W. C. Lin, A. Mahadevan-Jansen. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Phys. Med. Biol., 51, 2011(2006).

    [8] D. F. Swinehart. The Beer–Lambert law. J. Chem. Educ., 39, 333(1962).

    [9] J. W. Pickering, S. A. Prahl, Niek van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert. Double-integrating-sphere system for measuring the optical properties of tissue. Appl. Opt., 32, 399(1993).

    [10] G. D. Vries, J. F. Beek, G. W. Lucassen, M. J. C. V. Gemert. The effect of light losses in double integrating spheres on optical properties estimation. IEEE J. Select. Top. Quantum Electron., 5, 944(1993).

    [11] P. Kubelka, F. Munk. Ein Beitrag Zur Optik Der Farbanstriche. Zeitschrift für Technische Physik, 12, 593(1931).

    [12] O. Hamdy, M. Fathy, T. A. Al-Saeed, J. El-Azab, N. H. Solouma. Estimation of optical parameters and fluence rate distribution in biological tissues via a single integrating sphere optical setup. Optik, 140, 1004(2017).

    [13] G. M. Palmer, N. Ramanujam. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: theory and validation on synthetic phantoms. Appl. Opt., 45, 1062(2006).

    [14] J. L. Karagiannes, Z. Zhang, B. Grossweiner, L. I. Grossweiner. Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms. Appl. Opt., 28, 2311(1989).

    [15] W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert. Light dosimetry in optical phantoms and in tissues. I. Multiple flux and transport theory. Phys. Med. Biol., 33, 437(1988).

    [16] N. Honda, T. Nanjo, K. Ishii, K. Awazu. Optical properties measurement of laser coagulated tissues with double integrating sphere and inverse Monte Carlo technique in the wavelength range from 350 to 2100 nm. Proc. SPIE, 8221, 82211F(2012).

    [17] C. T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, H. J. Buhr. Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared rangelasers in surgery and medicine. Lasers Surg. Med., 23, 194(1998).

    [18] A. F. Kamanli, M. Z. Yildiz, H. Arslan, G. Çetinel, N. K. Lim, H. S. Lim. Development of a new multi-mode NIR laser system for photodynamic therapy. Opt. Laser Technol., 128, 106229(2020).

    [19] R.M. Szeimies, C. Abels, C. Fritsch, S. Karrer, P. Steinbach, W. Bäumler, G. Goerz, A.E. Goetz, M. Landthaler. Wavelength dependency of photodynamic effects after sensitization with 5-aminolevulinic acid in vitro and in vivo. J. Invest. Dermatol., 105, 672(1995).

    [20] H. Arslan, Y. B. Dolukan. Optical penetration depths and fluence distributions in chicken breast and liver tissues. Opt. Spectrosc., 127, 763-768(2019).

    [21] A. Roggan, D. Schädel, U. Netz, J. P. Ritz, C. T. Germer, G. Müller. The effect of preparation technique on the optical parameters of biological tissue. Appl. Phys. B, 69, 445(1999).

    [22] S. A. Prahl, M. J. C. Van Gemert, A. J. Welch. Determining the optical properties of turbid media by using the adding-doubling method. Appl. Opt., 32, 559(1993).

    [23] F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference. Refractive index of some mammalian tissues using a fiber optic cladding method. Appl. Opt., 28, 2297(1989).

    [24] O. Hamdy, J. El-Azab, T. A. Al-Saeed, M. F. Hassan, N. H. Solouma. A method for medical diagnosis based on optical fluence rate distribution at tissue surface. Materials, 10, 1104(2017).

    [25] R. Splinter, W. F. Cheong, M. J. C. van Gemert, A. J. Welch. In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm. Lasers Surg. Med., 9, 37(1989).

    [26] D. J. Maitland, J. T. Walsh, J. B. Prystowsky. Optical properties of human gallbladder tissue and bile. Appl. Opt., 32, 586(1993).

    [27] D. Zhu, Q. Luo, J. Cen. Effects of dehydration on the optical properties of in vitro porcine liver. Lasers Surg. Med., 33, 226(2003).

    [28] S. Rastegar, M. Motamedi. A theoretical analysis of dynamic variation of temperature dependent optical properties in the response of laser irradiated tissue. Proc. SPIE, 1202, 253(1990).

    [29] H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, J. Lu. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400–1100 nm. Phys. Med. Biol., 53, 2197(2008).

    [30] L. Wang, S. L. Jacques, L. Zheng. Determination of fluence rate distribution in a multilayered skin tissue model by using Monte Carlo simulations. Comput. Methods Prog. Biomed., 47, 131(1995).

    [31] H. Arslan, B. Pehlivanoz. Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta. Turk. J. Phys., 43, 286(2019).

    [32] I. F. Çilesiz, A. J. Welch. Optical properties of normal and thermally coagulated chicken liver tissue measured ex-vivo with diffuse reflectance. Appl. Opt., 32, 477(1993).

    [33] M. Atif, S. Firdous, M. S. Mehmood, M. Y. Hamza, M. Imran, G. Hussain, M. Ikram. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Opt. Spectrosc., 110, 313(2011).

    CLP Journals

    [1] Yuxi Shang, Hailang Dai, Daopeng Dai, Jinmao Gu, Meng Zhang, Qiheng Wei, Xianfeng Chen. Secondary structure changes of ox-LDL by photoirradiation in an optofluidic resonator[J]. Chinese Optics Letters, 2022, 20(3): 031702

    Data from CrossRef

    [1] Shimaa Mahdy, Omnia Hamdy, Mohammed A. Hassan, Mohamed A. A. Eldosoky. A modified source-detector configuration for the discrimination between normal and diseased human breast based on the continuous-wave diffuse optical imaging approach: a simulation study. Lasers in Medical Science(2021).

    Halil Arslan, Bahar Pehlivanoz. Effect of purification, dehydration, and coagulation processes on the optical parameters of biological tissues[J]. Chinese Optics Letters, 2021, 19(1): 011701
    Download Citation