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In this study, the effects of purification, dehydration, and coagulation processes on the absorption and reduced scattering
coefficients of chicken liver tissues have been investigated by using a single integrating sphere system. The purification
process performed on the tissue samples to remove blood residue has been found to cause a slight change in the optical
parameters. Although the dehydration process brings about an increase in the absorption coefficient due to the water loss,
no direct relationship has been observed between the reduced scattering coefficient and the dehydration level of the tissue.
In addition, it has been observed that there was a relatively small increase in the absorption coefficient and a significant
increase in the reduced scattering coefficient after the coagulation process. Therefore, it can be said that the optical
penetration depth decreased significantly after dehydration and coagulation processes unlike blood purification.
Moreover, fluence rate distributions inside the fresh, blood purified, dehydrated, and coagulated tissue models have been
investigated by using the Monte Carlo modeling of photon transport in multilayered tissues simulation code.
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1. Introduction

Light has been clinically used in the diagnosis and treatment of
various diseases for many years. The use of light in medical
applications has increased, especially with the development of
lasers, optical fibers, and optical detectors. Therefore, it has
become important to calculate the optimum dose of light to
be applied and understand the light–tissue interaction in order
to make an accurate diagnosis or to perform a successful treat-
ment. In this context, the knowledge of light propagation in the
target tissue, which has been identified with optical parameters
of tissue, is needed[1].
While light travels in the tissue, it can be absorbed, scattered,

or transmitted depending on not only the wavelength of the
light, but also the optical properties of the tissue. Absorption
is directly related to oxygen saturation, as well as the concentra-
tion of chromophores in the tissue such as hemoglobin, water,
and melanin. Scattering gives information about lipid concen-
tration, cell nucleus size, and change of cell membrane refractive
index[2]. Light propagation inside biological tissue is character-
ized by the absorption coefficient, scattering coefficient, and
anisotropy factor, which are the main optical parameters of tis-
sues. The absorption coefficient �μa� is a measure of the prob-
ability of light absorption within tissue of a unit length.
Similarly, the scattering coefficient �μs� describes the probability

of unit length scattering. In addition, the anisotropy factor �g� is
the mean cosine of the deflection angle due to scattering of the
photon. Moreover, the reduced scattering coefficient �μ 0

s�, which
is a parameter that fully reflects the scattering feature in media,
has been defined in terms of the anisotropy factor and the scat-
tering coefficient with the equation of

μ 0
s = μs�1 − g�: (1)

Light propagation in a medium can be described mathemati-
cally by using two different theories, which are analytical theory
and transport theory. Analytical theory, which is in principle the
most basic approach, is based on the physics of Maxwell’s equa-
tions. However, its applicability is limited due to the complex-
ities of the analytical solutions. Transport theory is defined by
the radiative transport equation (RTE), and it is based on the
principle of transporting photons from a medium (such as bio-
logical tissues) containing randomly distributed scattering and
absorbing particles. Compared to Maxwell’s equations, RTE
has been used more widely in order to define the light propaga-
tion inside the biological tissues[3].
Many experimental methods and theoretical models have

been used to obtain optical parameters of tissue from total dif-
fuse reflection and total diffuse transmission values based on the
RTE solution. The most commonly used techniques or models
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are Monte-Carlo simulation[4,5], inverse adding doubling
(IAD)[6,7], Beer–Lambert law[8], integrating sphere system[9,10],
Kubelka–Munk model[11,12], inverse Monte-Carlo simula-
tion[13], and diffusion approximation[14,15].
Diagnosis and treatment applications differ in the interaction

type of the light with target tissue. There are mainly five types of
interactions, which are photo-chemical interactions, thermal
interactions, photo-ablation, plasma-induced ablation, and
photo-disruption[16]. Such interactions are heavily dependent
on the physical and chemical properties of biological tissues
together with the wavelength, optical power, and exposure time.
For example, laser-induced interstitial thermotherapy (LITT), in
which photo-thermal interaction is important, has been formed
as a basis of a new tumor treatment technique with the possibil-
ity of tissue coagulation[17]. In addition, various procedures are
needed to be applied on tissue samples in some experimental
studies. For example, tissues can be kept in isotonic saline sol-
ution to prevent water loss before the measurements. Since all of
these processes result in some changes in the optical properties
of the tissues, it is important to determine how much these
changes are crucial for not only laboratory studies but alsomedi-
cal applications.
In this study, the effects of various processes, which are blood

purification, dehydration, and coagulation, on the optical
parameters of biological tissue samples have been investigated.
By using the experimental results, fluence rate distributions
inside modelled tissues, which were exposed to these processes,
have been obtained with the help of Monte Carlo simulations.

2. Materials and Methods

In this study, a single integrating system has been used to deter-
mine the optical parameters of the prepared tissue samples. A
schematic view of the experimental setup is illustrated in Fig. 1.
The photodynamic therapy (PDT) laser device used in the

experiment can operate up to a maximum of 1.5 W optical
power at a fixed 635 nm wavelength. The wavelength spectrum
of the device is given in Fig. 2. The device, detailed information
about which can be found in Ref. [18], was designed for use
together with the photo-sensitizers that have relatively higher
absorption around 635 nm. For example, 5-aminolevulinic acid
(5-ALA) is medically used effectively together with 635 nm light
sources[19,20].

Chicken liver tissue has been used in the experiments. Tissues
have been cut into flat sheets of port size of the integrating sphere
and sandwiched between two microscope slides. Prepared tissue
samples have been divided into four different groups, each of
which has been exposed to different experiment conditions.
The first experimental group has been formed with fresh tis-

sue samples that have the thickness between 0.8 mm and 1 mm.
Since the loss of the freshness causes change in the optical
parameters of the tissues[21], freshness of the tissues used in
the experiments has been taken care of.
For the second group, tissue samples have been kept in 0.9%

isotonic saline solution for 10 min. Then, the samples have been
removed from the solution and waited for 2–3 min before they
are placed between two slides. Tissue thicknesses have been
measured with a micrometer and recorded for later use.
Considering that the water concentration in the tissue affects

the optical parameters, the third experiment group has been pre-
pared to investigate the effect of dehydration. This group has been
divided into two subgroups named dehydration and control.
Samples belonging to the control group have been fixed between
the two microscope slides. On the other hand, the samples of the
dehydration group have been placed on a single glass slide. The
thicknesses and theweights of the tissue samples in each subgroup
have been measured before they are placed in a 37°C electro-
thermal incubator. Tissue samples, which were kept in the incu-
bator for different durations (4, 8, 12, 16, 20, 24 h), have been
removed from the incubator, and their thicknesses and weights
have been measured again. Dehydration level for each tissue
sample has been calculated by using the equation of

ω =
mf −md

mf
, (2)

where mf and md are the weights of fresh and dehydrated sam-
ples, respectively. In order to reduce the statistical uncertainty,
nine samples have been prepared for each subgroup and period
of time. The samples removed from the incubator have not been
used again.
The fourth experimental group has been prepared to investi-

gate the effect of coagulation. In this experimental group, tissue

Fig. 1. Schematic view of experimental setup. 1, PDT laser device; 2, fiber optics
cable; 3, collimator; 4, tissue samples; 5, integrating sphere; 6, photodiode
amplifier; 7, computer.

Fig. 2. Wavelength spectrum of the PDT laser device.
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samples have been kept in a 95°C water bath for 10 min. Finally,
tissue samples have waited at room temperature for 5 min in
order to ensure thermal equilibrium, and then coagulated tissue
samples have been placed on two microscope slides to measure
optical parameters.
A single integrating sphere system has been used for measure-

ments of the total reflectance and the total transmittance values
for all of the tissue samples. The values obtained from the mea-
surements have been added to the data file in IAD software
developed by Prahl[22]. IAD is an iterative program used to com-
pute optical parameters by solving the transport equation.
Optical parameters of the samples of each group have been
expressed as the mean ± standard deviation (SD). The mean
value has been obtained by performing three measurements
for each tissue sample, and then the mean ± SD values have been
calculated from different samples.
In addition, by using the Monte Carlo modeling of photon

transport in multilayered tissues (MCML) code, chicken liver
tissue samples have been modeled to have simple cylindrical
geometries. The absorption and reduced scattering coefficient
values obtained in the experimental part of the study have been
used as input parameters of the simulations. The other input
parameters, anisotropy factor and refractive index, have been
determined on the basis of literature values for chicken liver tis-
sue and taken as 0.9 and 1.37, respectively[23].

3. Results and Discussion

The absorption coefficient and reduced scattering coefficient of
fresh chicken liver tissue for 635 nm have been determined to be
0.20 ± 0.04mm−1 and 0.94 ± 0.09mm−1, respectively. These
values are quite compatible with the ones reported in the
literature[24].
The purification process performed on the tissue is used dur-

ing the sample preparation in order to remove blood residues.
This method, which is also used for the storage of tissues, pre-
vents the prepared tissue samples from drying out while waiting
for the measurement. In some of the studies reported in the lit-
erature, tissue samples were stored in saline solution before the
experiment[25,26]. Therefore, the second group of this study has
been prepared in order to investigate the effect of saline solution
on optical parameters. As the result of the measurements,
absorption and reduced scattering coefficients of chicken liver
tissue samples after blood purification have been determined
to be 0.18 ± 0.04mm−1 and 0.98 ± 0.05mm−1, respectively.
Compared to the fresh tissue, a small decrease in the absorption
coefficient and a small increase in the reduced scattering coef-
ficient have been observed. In other words, short-term storage
of tissue samples in saline solution caused a slight change in
the optical parameters.
The third group, consisting of two subgroups, has been pre-

pared to estimate the effect of dehydration on optical parameters
of the tissue samples. Dehydration levels of the tissue samples
belonging to both dehydration and control groups are illustrated
in Fig. 3 as a function of time.

At the end of 24 h, the maximum average weight loss has been
found to be approximately 71% for the samples in dehydration
group, while it was found to be 48% for the control group. The
lower weight loss in the control group can be attributed to the
second microscope slide, which covers the tissue sample and
partially prevents the dehydration. In any case, depending on
the dehydration level, both weights and thicknesses decrease
with the loss of water. A sharp decrease in the hydration level
during the first 12 h ensures that the weights of the tissue sam-
ples from both subgroups decrease with similar behavior. The
weight loss gradually decreases as the samples are kept for longer
times in the incubator.
Optical parameters of the tissue samples kept in the incubator

are also affected due to dehydration. Absorption and reduced
scattering coefficients of the tissue samples from the control
and dehydration groups are given in Fig. 4 as a function of incu-
bation time.
It can be seen from the figure that both absorption and

reduced scattering coefficients of tissue samples increase with
the incubation time. Therefore, it has become important to
investigate the relationship between optical properties and dehy-
dration level. The absorption and the reduced scattering coeffi-
cients are shown in Fig. 5 as a function of the dehydration level.
It can be obviously seen from the figure that the absorption

coefficients of the tissue samples in both groups increase due
to water loss in the tissue. Although the number of chromo-
phores does not change[27], tissue samples shrink and density
increases in the cells due to increased water loss. Hence, it
can be said that there is a correlation between the absorption
coefficient and dehydration level independent from how the
sample is dehydrated. However, the reduced scattering coeffi-
cients of the samples from the dehydration group have been
found to be almost the same for different dehydration levels.
Furthermore, unlike the dehydration group, the reduced scatter-
ing coefficient of the control group increases with the increase in
the dehydration level. Therefore, it can be concluded that there is
no direct relationship between the reduced scattering coefficient
and the dehydration level.

Fig. 3. Dehydration levels of the tissue samples as a function of time for dehy-
dration and control groups.
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The last experimental group has been formed to examine the
effects of coagulation on the optical parameters of chicken liver
tissue. For this purpose, fresh tissue samples have been kept in a
water bath set at 95°C. It has been observed that the appearances
and structures of the tissue samples changed with the effect of
the high temperature. It is known that the alterations in the
structure and the appearance of tissues because of the photo-
thermal processes result in the changes in the optical proper-
ties[28]. The absorption and reduced scattering coefficients of
the coagulated tissue samples for 635 nm have been found to be
0.25 ± 0.06mm−1 and 9.28 ± 0.92mm−1, respectively. The liver
tissue consists of scattering particles such as organelles, capilla-
ries, cell nuclei, and cells that cause light scattering in tissues.
Thermal coagulation brings about the changes in size, refractive
index, and distribution of these particles. Consequently,
increased incompatibility in the refractive indices results in an
increase in the reduced scattering coefficient. It was previously
reported that the increase in the absorption coefficient after
thermal coagulation is due to the denser packing of cells owing
to the shrinking of liver samples, with no change in the number
of chromophores[29].
In addition to the experimental part, fluence rate distributions

inside the fresh, blood purified, dehydrated, and coagulated tis-
sue models have been investigated by using the MCML simula-
tion code. MCML is one of the commonly used softwares for
modeling light transport in heterogeneous and multilayer

structures such as biological tissues[30]. The fluence rate distri-
butions are given in Fig. 6 as a function of depth inside the tissue
models. As can be expected, fluence rate distributions inside the
fresh and purified tissue models have been obtained to be quite
similar. Because of the relatively greater absorption or scattering
coefficients, the distributions inside the dehydrated and coagu-
lated tissue models have been found to be steeper. The increased
absorption coefficient of dehydrated tissue causes a decrease in
the number of photons at a certain depth. In addition, the

Fig. 4. (a) Absorption coefficient and (b) reduced scattering coefficient of the
tissue samples as a function of incubation time.

Fig. 5. (a) Absorption and (b) reduced scattering coefficients of tissue sam-
ples as a function of dehydration levels.

Fig. 6. Fluence rate distributions inside the fresh, purified, dehydrated, and
coagulated tissue models as a function of depth.
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reduced scattering coefficient of coagulated tissue indicates that
multiple scattering occurs within the tissue. Therefore, the
coagulation process causes a reduction in the optical penetration
depth inside the biological tissues. Moreover, by looking at the
distributions given in the figure, one can also conclude that opti-
cal penetration depth has the smallest value for the coagulated
tissue model. The results of this study are in good agreement
with similar studies performed by using different wavelengths
of light and various types of tissue[21,27–33].

4. Conclusion

The processes, like purification, dehydration, and coagulation,
could affect the blood, cell density, and water content inside
the biological tissues. Because of this fact, the optical parameters
and, accordingly, the fluence rate distributions inside the tissues
are expected to be changed after such operations. In this study,
the effects of purification, dehydration, and coagulation proc-
esses on the optical parameters of biological tissues have been
investigated. For this purpose, absorption and reduced scatter-
ing coefficients of fresh, purified, dehydrated, and coagulated
chicken liver tissue samples have been determined by using a
single integrating sphere system.
It has been concluded that the purification process performed

on the tissue samples to remove blood residues causes a very small
decrease (increase) in the absorption (scattering) coefficient. In
other words, short-term storage of tissue samples in saline solu-
tion causes a slight change in the optical parameters. In addition,
the absorption coefficient of the samples increases after the dehy-
dration process because of the water loss in the tissue. However,
no direct relationship has been observed between the reduced
scattering coefficient and the dehydration level. Moreover, the
coagulation process causes an increase in not only the absorption
coefficient but also the reduced scattering coefficient. Due to the
increased incompatibility in refractive indices of scattering par-
ticles inside the tissue, an increase in the reduced scattering coef-
ficient has been found to be relatively more pronounced.
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