• Photonics Research
  • Vol. 8, Issue 2, 160 (2020)
Can Li1、3、†,*, Jiawei Shi1、†, Xiatian Wang2, Boquan Wang2, Xiaojing Gong2, Liang Song2, and Kenneth K. Y. Wong1、4、*
Author Affiliations
  • 1Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
  • 2Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • 3e-mail: lc0616@163.com
  • 4e-mail: kywong@eee.hku.hk
  • show less
    DOI: 10.1364/PRJ.379882 Cite this Article Set citation alerts
    Can Li, Jiawei Shi, Xiatian Wang, Boquan Wang, Xiaojing Gong, Liang Song, Kenneth K. Y. Wong. High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids[J]. Photonics Research, 2020, 8(2): 160 Copy Citation Text show less
    References

    [1] J. Workman, L. Weyer. Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy(2012).

    [2] L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, R. R. Alfano. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt., 19, 056004(2014).

    [3] L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, R. Alfano. Transmission in near-infrared optical windows for deep brain imaging. J. Biophoton., 9, 38-43(2016).

    [4] D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, R. R. Alfano. Fourth near-infrared optical window for assessment of bone and other tissues. Proc. SPIE, 9689, 96894J(2016).

    [5] V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, J. S. Orringer. Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling. Lasers Surg. Med., 43, 470-480(2011).

    [6] V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, M. N. Islam. Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension. Lasers Surg. Med., 46, 689-702(2014).

    [7] I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, M. Richardson. Welding of polymers using a 2 μm thulium fiber laser. Opt. Laser Technol., 44, 2095-2099(2012).

    [8] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics, 7, 205-209(2013).

    [9] M. Yamanaka, T. Teranishi, H. Kawagoe, N. Nishizawa. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging. Sci. Rep., 6, 31715(2016).

    [10] Y. Li, J. Jing, E. Heidari, J. Zhu, Y. Qu, Z. Chen. Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser. Sci. Rep., 7, 14525(2017).

    [11] P. Wang, H. W. Wang, M. Sturek, J. X. Cheng. Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm. J. Biophoton., 5, 25-32(2012).

    [12] B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, S. Emelianov. Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood. Opt. Lett., 37, 1244-1246(2012).

    [13] M. Wu, K. Jansen, A. F. W. van der Steen, G. van Soest. Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. Biomed. Opt. Express, 6, 3276-3286(2015).

    [14] J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, J. Cheng. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. Photoacoustics, 4, 11-21(2016).

    [15] L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, L. V. Wang. Label-free photoacoustic tomography of whole mouse brain structures ex vivo. Neurophotonics, 3, 035001(2016).

    [16] J. Hui, Q. Yu, T. Ma, P. Wang, Y. Cao, R. S. Bruning, Y. Qu, Z. Chen, Q. Zhou, M. Sturek, J. Cheng, W. Chen. High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO. Biomed. Opt. Express, 6, 4557-4566(2015).

    [17] Y. Li, X. Gong, C. Liu, R. Lin, W. Hau, X. Bai, L. Song. High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. J. Biomed. Opt., 20, 065006(2015).

    [18] M. Wu, G. Springeling, M. Lovrak, F. Mastik, S. Iskander-Rizk, T. Wang, H. M. M. van Beusekom, A. F. W. van der Steen, G. Van Soest. Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second. Biomed. Opt. Express, 8, 943-953(2017).

    [19] Y. Cao, A. Kole, J. Hui, Y. Zhang, J. Mai, M. Alloosh, M. Sturek, J.-X. Cheng. Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography. Sci. Rep., 8, 2400(2018).

    [20] T. Buma, N. C. Conley, S. W. Choi. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser. Biomed. Opt. Express, 9, 276-288(2018).

    [21] M. K. Dasa, C. Markos, M. Maria, C. R. Petersen, P. M. Moselund, O. Bang. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650–1850 nm region. Biomed. Opt. Express, 9, 1762-1770(2018).

    [22] 1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging. Opt. Lett., 43, 5849-5852(2018).

    [23] In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer. J. Biomed. Opt., 17, 116016(2012).

    [24] Frequency analysis of the photoacoustic signal generated by coronary atherosclerotic plaque. Ultrasound Med. Biol., 42, 2017-2025(2016).

    CLP Journals

    [1] Jiangbo Chen, Yachao Zhang, Xiaozhen Li, Jingyi Zhu, Dengfeng Li, Shengliang Li, Chun-Sing Lee, Lidai Wang. Confocal visible/NIR photoacoustic microscopy of tumors with structural, functional, and nanoprobe contrasts[J]. Photonics Research, 2020, 8(12): 1875

    Can Li, Jiawei Shi, Xiatian Wang, Boquan Wang, Xiaojing Gong, Liang Song, Kenneth K. Y. Wong. High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids[J]. Photonics Research, 2020, 8(2): 160
    Download Citation