• Journal of Inorganic Materials
  • Vol. 38, Issue 8, 901 (2023)
Qiqi ZENG, Yanzheng WU, Huangyu CHENG, kang SHAO, Tianyu HU, and Zaifa PAN*
Author Affiliations
  • College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
  • show less
    DOI: 10.15541/jim20220733 Cite this Article
    Qiqi ZENG, Yanzheng WU, Huangyu CHENG, kang SHAO, Tianyu HU, Zaifa PAN. Calcium Doped Self-activated Zinc Germanate Long Afterglow Materials: Multicolor Afterglow and Application in Dynamic Anti-counterfeiting[J]. Journal of Inorganic Materials, 2023, 38(8): 901 Copy Citation Text show less
    References

    [1] Z Y XU. Luminescence mechanism and structure characteristics of long afterglow phosphors. Modern Chemical Research, 54(2017).

    [2] Z H ZHOU, Y Y LI, M Y PENG. Near-infrared persistent phosphors: synthesis, design, and applications. Chemical Engineering Journal(2020).

    [3] K HUANG, N LE, J S WANG et al. Designing next generation of persistent luminescence: recent advances in uniform persistent luminescence nanoparticles. Advance Materials(2022).

    [4] J XU, S TANABE. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective. Journal of Luminescence, 581(2019).

    [5] Y H LIN, Z T ZHANG, Z L TANG et al. The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3. Materials Chemistry and Physics, 156(2001).

    [6] B B SRIVASTAVA, S K GUPTA, Y LI et al. Bright persistent green emitting water-dispersible Zn2GeO4:Mn nanorods. Dalton Transactions, 7328(2020).

    [7] V Y SUZUKI, PAULA N H DE, R GONCALVES et al. Exploring effects of microwave-assisted thermal annealing on optical properties of Zn2GeO4 nanostructured films. Materials Science and Engineering: B, 7(2019).

    [8] Q BAI, Z J WANNG, P L LI et al. Zn2-aGeO4:aRE and Zn2Ge1-aO4:aRE (RE=Ce3+, Eu3+, Tb3+, Dy3+): 4f-4f and 5d-4f transition luminescence of rare earth ions under different substitution. RSC Advances(2016).

    [9] F F CHI, X T WEI, B JIANG et al. Luminescence properties and the thermal quenching mechanism of Mn2+ doped Zn2GeO4 long persistent phosphors. Dalton Transactins, 1303(2018).

    [10] H LI, Y H WANG, S H CHEN et al. Enhanced persistent luminescence of Zn2GeO4 host by Ti4+ doping. Journal of Materials Science: Materials in Electronics, 14827(2017).

    [11] M M SHANG, G G LI, D M YANG et al. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties. Dalton Transactions, 9379(2011).

    [12] G ANOOP, M K KRISHNA, M K JAYARAJ et al. The effect of Mg incorporation on structural and optical properties of Zn2GeO4  :Mn phosphor. Journal of the Electrochemical Society, J7(2008).

    [13] H L HE, Y H ZHANG, Q W PAN et al. Controllable synthesis of Zn2GeO4:Eu nanocrystals with multi-color emission for white light-emitting diodes. Journal of Materials Chemistry C, 5419(2015).

    [14] S A ZHANG, Y H HU, R CHEN et al. Photoluminescence and persistent luminescence in Bi3+-doped Zn2GeO4 phosphors. Optical Materials, 1830(2014).

    [15] X L PENG, Z T TANG, Y H LUO et al. Visual color modulation and luminescence mechanism studies on Mn/Eu co-doped Zn-Mg- Ge-O long afterglow system. Ceramics International, 14005(2020).

    [16] L X SHI, W W ZHENG, H Y MIAO et al. Ratiometric persistent luminescence aptasensors for carcinoembryonic antigen detection. Microchimica Acta, 615(2020).

    [17] D L GAO, K W MA, P WANG et al. Tuning multicolour emission of Zn2GeO4:Mn phosphors by Li+ doping for information encryption and anti-counterfeiting applications. Dalton Transactions, 553(2022).

    [18] D L GAO, Q Q KUANG, F GAO et al. Achieving opto-responsive multimode luminescence in Zn1+xGa2-2xGexO4:Mn persistent phosphors for advanced anti-counterfeiting and information encryption. Materials Today Physics(2022).

    [19] Z S LIU, X P JING, L X WANG. Luminescence of native defects in Zn2GeO4. Journal of The Electrochemical Society, 500(2007).

    [20] M G BANDPAY, F AMERI, K ANSARI et al. Mathematical and empirical evaluation of accuracy of the Kubelka-Munk model for color match prediction of opaque and translucent surface coatings. Journal of Coatings Technology and Research, 1117(2018).

    [21] R LÓPEZ, R GÓMEZ. Band-gap energy estimation from diffuse reflectance measurements on Sol-Gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 1(2012).

    [22] T MALDINEY, A LECOINTRE, B VIANA et al. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. Journal of the American Chemical Society, 11810(2011).

    [23] K WANG, L P YAN, K SHAO et al. Near-infrared afterglow enhancement and trap distribution analysis of silicon-chromium co-doped persistent luminescence materials Zn1+xGa2-2xSixO4:Cr3+. Journal of Inorganic Materials, 983(2019).

    [24] C L WANG, Y H JIN, Y LÜ et al. Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4:Eu2+, Ho3+ and photostimulable luminescence for optical information storage. Journal of Materials Chemistry C, 6058(2018).

    [25] I MARTINČEK, I TUREK, N TARJÁNYI. Effect of boundary on refractive index of PDMS. Optical Materials Express, 1997(2014).

    Qiqi ZENG, Yanzheng WU, Huangyu CHENG, kang SHAO, Tianyu HU, Zaifa PAN. Calcium Doped Self-activated Zinc Germanate Long Afterglow Materials: Multicolor Afterglow and Application in Dynamic Anti-counterfeiting[J]. Journal of Inorganic Materials, 2023, 38(8): 901
    Download Citation