• Journal of Infrared and Millimeter Waves
  • Vol. 34, Issue 2, 150 (2015)
HUANG Yan*, LIANG Gong-Ying, HUO Ge, and LU Xue-Gang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2015.02.005 Cite this Article
    HUANG Yan, LIANG Gong-Ying, HUO Ge, LU Xue-Gang. Analysis for optical transmission characteristic of Fe3O<.sub>4@TiO2 core @shell colloidal photonic crystals[J]. Journal of Infrared and Millimeter Waves, 2015, 34(2): 150 Copy Citation Text show less
    References

    [1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett. 1987,58(20): 2059-2062.

    [2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett. 1987,58(23): 2486-2489.

    [3] Ge J P, Hu Y X, Yin Y D. Highly tunable superparamagnetic colloidal photonic crystals[J]. Angew. Chem. 2007,119(39): 7572-7575.

    [4] Ge J P, Yin Y D. Magnetically responsive colloidal photonic crystals[J]. J. Mater. Chem. 2008,18(42): 5041-5045.

    [5] He L, Wang M S, Zhang Q, et al. Magnetic assembly and patterning of general nanoscale materials through nonmagnetic templates[J]. Nano Lett. 2012,13(1): 264-271.

    [6] He L, Hu Y X, Han X G, et al. Assembly and photonic properties of superparamagnetic colloids in complex magnetic fields[J]. Langmuir. 2011,27(22): 13444-13450.

    [7] He L, Wang M S, Ge J P, et al. Magnetic assembly route to colloidal responsive photonic nanostructures[J]. Accounts Chem. Res. 2012,45(9): 1431-1440.

    [8] He L, Hu Y X, Kim H, et al. Magnetic assembly of nonmagnetic particles into photonic crystal structures[J]. Nano Lett. 2010,10(11): 4708-4714.

    [9] Ge J P, Kwon S, Yin Y D. Niche applications of magnetically responsive photonic structures[J]. J. Mater. Chem. 2010,20(28): 5777-5784.

    [10] Yang Y, Gao L, Lopez G P, et al. Tunable assembly of colloidal crystal alloys using magnetic nanoparticle fluids[J]. ACS nano. 2013,7(3): 2705-2716.

    [11] Zhang Q, Janner M, He L, et al. Photonic labyrinths: two-dimensional dynamic magnetic assembly and in situ solidification[J]. Nano Lett. 2013,13(4): 1770-1775.

    [12] Lin M H, Huang H L, Liu Z T, et al. Growth-dissolution-regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions[J]. Langmuir. 2013,29(49): 15433-15441.

    [13] Ge J P, Yin Y D. Responsive photonic crystals[J]. Angewandte Chemie International Edition. 2011,50(7): 1492-1522.

    [14] Ge J P, Hu Y X, Zhang T R, et al. Self-assembly and field-responsive optical diffractions of superparamagnetic colloids[J]. Langmuir. 2008,24(7): 3671-3680.

    [15] Xu X L, Majetich S A, Asher S A. Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals[J]. J. Am. Chem. Soc. 2002,124(46): 13864-13868.

    [16] Shim T S, Kim S H, Sim J Y, et al. Dynamic modulation of photonic bandgaps in crystalline colloidal arrays under electric field[J]. Adv. Mater. 2010,22(40): 4494-4498.

    [17] Han M G, Shin C G, Jeon S J, et al. Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band[J]. Adv. Mater. 2012,24(48): 6438-6444.

    [18] Liu D X, Yates M Z. Fabrication of size-tunable TiO2 tubes using rod-shaped calcite templates[J]. Langmuir. 2007,23(20): 10333-10341.

    [19] Yee K S. Numerical solution of initial boundary value problems involving Maxwells equations[J]. IEEE Trans. Antennas Propag. 1966,14(3): 302-307.

    [20] Ge D B, Yan Y B. Finite-difference time-domain method for electromagnetic waves[M]. Second ed. Xian: Press of Xidian University, 2005: 45-113.

    [21] Wang W D, Wang J X, Li Y, et al. Convolutional perfectly matched layer absorbing boundary condition of the finite-difference time-domain method for the microstrip antenna[C]. In Computing, Measurement, Control and Sensor Network (CMCSN), 2012 International Conference on IEEE, 2012: 125-128.

    HUANG Yan, LIANG Gong-Ying, HUO Ge, LU Xue-Gang. Analysis for optical transmission characteristic of Fe3O<.sub>4@TiO2 core @shell colloidal photonic crystals[J]. Journal of Infrared and Millimeter Waves, 2015, 34(2): 150
    Download Citation