• Journal of Inorganic Materials
  • Vol. 35, Issue 5, 532 (2020)
Jianing WANG1、2, Jun JIN2, and Zhaoyin WEN2、*
Author Affiliations
  • 1CAS Key Laboratory of Material for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20190237 Cite this Article
    Jianing WANG, Jun JIN, Zhaoyin WEN. Application of Separators Modified by Carbon Nanospheres Enriched with α-MoC1-x Nanocrystalline in Lithium Sulfur Batteries[J]. Journal of Inorganic Materials, 2020, 35(5): 532 Copy Citation Text show less
    References

    [1] J BERG E, C VILLEVIEILLE, D STREICH et al. Rechargeable batteries: grasping for the limits of chemistry. J. Electrochem. Soc., 162, A2468-A2475(2015).

    [2] A MANTHIRAM, Z FU Y, H CHUNG S et al. Rechargeable lithium- sulfur batteries. Chem. Rev., 114, 11751-11787(2014).

    [3] X AO, X WU W, T WU et al. Operating temperature on cathode material and electrochemical performance of Na-NiCl2 batteries. J. Inorg. Mater., 32, 1243-1249(2017).

    [4] X YIN Y, S XIN, G GUO Y et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed., 52, 13186-13200(2013).

    [5] H WANG Y, J JIN, S GUO Z et al. Direct view for the deformation evolution of sulfur electrode during Li-S battery cycling. J. Inorg. Mater., 32, 247-251(2017).

    [6] J HASSOUN, B SCROSATI. A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed., 49, 2371-2374(2010).

    [7] Z LIN, C LIU Z, J DUDNEY N et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano, 7, 2829-2833(2013).

    [8] W KIM J, D OCON J, W PARK D et al. Functionalized graphene- based cathode for highly reversible lithium-sulfur batteries. ChemSusChem, 7, 1265-1273(2014).

    [9] Y DIAO, K XIE, B HONG X et al. Analysis of the sulfur cathode capacity fading mechanism and review of the latest development for Li-S battery. Acta Chim. Sin., 71, 508-518(2013).

    [10] V MIKHAYLIK Y, R AKRIDGE J. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc., 151, A1969-A1976(2004).

    [11] L JI X, F NAZAR L. Advances in Li-S batteries. J. Mater. Chem., 20, 9821-9826(2010).

    [12] Y XU G, B DING, J PAN et al. High performance lithium-sulfur batteries: advances and challenges. J. Mater. Chem. A, 2, 12662-12676(2014).

    [13] S SU Y, A MANTHIRAM. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun., 3, 1166(2012).

    [14] X ZU C, S SU Y, Z FU Y et al. Improved lithium-sulfur cells with a treated carbon paper interlayer. Phys. Chem. Chem. Phys., 15, 2291-2297(2013).

    [15] B XIAO Z, Z YANG, L WANG et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater., 27, 2891-2898(2015).

    [16] D ZHOU W, C XIAO X, M CAI et al. Polydopamine-coated, nitrogen- doped, hollow carbon sulfur double-layered core-shell structure for improving lithium sulfur batteries. Nano Lett., 14, 5250-5256(2014).

    [17] Z FU Y, A MANTHIRAM. Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium- sulfur batteries. J. Phys. Chem. C, 116, 8910-8915(2012).

    [18] Q MA G, Y WEN Z, J JIN et al. Enhanced cycle performance of Li-S battery with a polypyrrole functional interlayer. J. Power Sources, 267, 542-546(2014).

    [19] Y XING, Y YANG, J CHEN R et al. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery. Small, 14, 1704366(2018).

    [20] L WANG C, S SUN L, F ZHANG F et al. Formation of Mo-polydopamine hollow spheres and their conversions to MoO2/C and Mo2C/C for efficient electrochemical energy storage and catalyst. Small, 13, 1701246(2017).

    [21] P ZHANG S, G WANG, J JIN et al. Self-catalyzed decomposition of discharge products on the oxygen vacancy sites of MoO3 nanosheets for low-overpotential Li-O2 batteries. Nano Energy, 36, 186-196(2017).

    [22] F ZHOU, Z LI, X LUO et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett., 18, 1035-1043(2018).

    [23] B NI L, J ZHAO G, G YANG et al. Dual core-shell-structured S@C@MnO2 nanocomposite for highly stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 9, 34793-34803(2017).

    Jianing WANG, Jun JIN, Zhaoyin WEN. Application of Separators Modified by Carbon Nanospheres Enriched with α-MoC1-x Nanocrystalline in Lithium Sulfur Batteries[J]. Journal of Inorganic Materials, 2020, 35(5): 532
    Download Citation