[1] C Wang, M Zhang, X Chen, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).
[2] P A Morton, J B Khurgin, M J Morton. All-optical linearized Mach-Zehnder modulator. Optics Express, 29, 37302-37313(2001).
[3] Shihao Sun, Xinlun Cai. High-performance thin-film electro-optical modulator based on heterogeneous silicon and lithium niobate platform (Invited). Infrared and Laser Engineering, 50, 20211047(2021).
[4] R Gao, N Yao, J Guan, et al. Lithium niobate microring with ultra-high Q factor above 108. Chinese Optics Letters, 20, 011902(2022).
[5] R Gao, H Zhang, F Bo, et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108. New J Phys, 23, 123027(2021).
[6] Y Zheng, X Chen. Nonlinear wave mixing in lithium niobate thin film. Advances in Physics: X, 6, 1889402(2021).
[7] J Lin, N Yao, Z Hao, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys Rev Lett, 122, 173903(2019).
[8] B Y Xu, L K Chen, J T Lin, et al. Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator. Sci China-Phys Mech Astron, 65, 294262(2022).
[9] G T Xue, Y F Niu, X Liu, et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys Rev Appl, 15, 064059(2021).
[10] J Lin, S Farajollahi, Z Fanget, et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Adv Photon, 4, 036001(2022).
[11] P Zhang, H Huang, Y Jiang, et al. High-speed electro-optic modulator based on silicon nitride loaded lithium niobate on an insulator platform. Optics Letters, 46, 5986-5989(2021).
[12] C Wang, M Zhang, M J Yu, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature Communications, 10, 978(2019).
[13] M Zhang, B Buscaino, C Wang, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).
[14] D Pohl, M R Escalé, M Madiet, et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat Photonics, 14, 24-29(2020).
[15] L He, M Zhang, A Shams-Ansari, et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Optics Letters, 44, 2314-2317(2019).
[16] Hu C, Pan A, Li T, et al. Highefficient polarization independent edge coupler f thinfilm lithium niobite waveguide devices[EBOL]. (20200907)[20221227]. https:arxiv.gabs2009.02855.
[17] Y Pan, T Heyun, J Zhang, et al. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter. Optics Letters, 46, 1478-1481(2021).
[18] Press W H, Flannery B P, Teukolsky S A, et al. Numerical Recipes: The Art of Scientific Computing[M]. 3rd ed. New Yk: Cambridge University Press, 1986: 156163.
[19] Rsoft Design Group. Beam PR, OP7.0 user guide[Z]. Ossining: Rsoft Design Group Inc, 2006.
[20] G R Hadley. Transparent boundary condition for beam propagation method. Optics Letters, 16, 624-626(1991).
[21] G R Hadley. Transparent boundary condition for the beam propagation method. IEEE Journal of Quantum Electronics, 28, 363-370(1992).
[22] C Vassalo, F Collino. Highly efficient absorbing boundary condition for the beam propagation method. Journal of Lightwave Technologyvol, 14, 1570-1577(1996).
[23] W P Huang, C L Xu, W Lui, et al. The perfectly matched layer (PML) boundary condition for the beam propagation method. IEEE Photonics Technology Letters, 8, 649-651(1996).
[24] Y P Chiou, H C Chang. Complementary operators method as the absorbing boundary condition for the beam propagation method. IEEE Photonics Technology Letters, 10, 976-978(1998).