• Photonics Research
  • Vol. 9, Issue 6, 1003 (2021)
Cheng Shen1、*, Mingshu Liang1, An Pan2, and Changhuei Yang1
Author Affiliations
  • 1Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
  • 2Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
  • show less
    DOI: 10.1364/PRJ.419886 Cite this Article Set citation alerts
    Cheng Shen, Mingshu Liang, An Pan, Changhuei Yang. Non-iterative complex wave-field reconstruction based on Kramers–Kronig relations[J]. Photonics Research, 2021, 9(6): 1003 Copy Citation Text show less
    References

    [1] J. W. Goodman. Introduction to Fourier Optics(2005).

    [2] P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett., 30, 468-470(2005).

    [3] C. S. Seelamantula, N. Pavillon, C. Depeursinge, M. Unser. Exact complex-wave reconstruction in digital holography. J. Opt. Soc. Am. A, 28, 983-992(2011).

    [4] G. Popescu, T. Ikeda, R. R. Dasari, M. S. Feld. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett., 31, 775-777(2006).

    [5] Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, G. Popescu. Spatial light interference microscopy (SLIM). Opt. Express, 19, 1016-1026(2011).

    [6] A. Anand, V. Chhaniwal, B. Javidi. Tutorial: common path self-referencing digital holographic microscopy. APL Photon., 3, 071101(2018).

    [7] N. T. Shaked, Y. Zhu, M. T. Rinehart, A. Wax. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells. Opt. Express, 17, 15585-15591(2009).

    [8] P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, K. Mantel. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters. Opt. Express, 19, 1930-1935(2011).

    [9] C. Joo, T. Akkin, B. Cense, B. H. Park, J. F. De Boer. Spectral domain optical coherence phase microscopy for quantitative phase contrast imaging. Opt. Lett., 30, 2131-2133(2005).

    [10] Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, M. S. Feld. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase referencing. Opt. Express, 17, 10681-10687(2009).

    [11] R. W. Gerchberg. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 237-246(1972).

    [12] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982).

    [13] C. Shen, X. Bao, J. Tan, S. Liu, Z. Liu. Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint. Opt. Express, 25, 16235-16249(2017).

    [14] J. M. Rodenburg, H. M. Faulkner. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett., 85, 4795-4797(2004).

    [15] A. Pan, B. Yao. Three-dimensional space optimization for near-field ptychography. Opt. Express, 27, 5433-5446(2019).

    [16] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [17] A. Pan, Y. Zhang, K. Wen, M. Zhou, J. Min, M. Lei, B. Yao. Subwavelength resolution Fourier ptychography with hemispherical digital condensers. Opt. Express, 26, 23119-23131(2018).

    [18] L. Waller, L. Tian, G. Barbastathis. Transport of intensity phase amplitude imaging with higher order intensity derivatives. Opt. Express, 18, 12552-12561(2010).

    [19] C. Zuo, Q. Chen, Y. Yu, A. Asundi. Transport-of-intensity phase imaging using savitzky-golay differentiation filter-theory and applications. Opt. Express, 21, 5346-5362(2013).

    [20] S. B. Mehta, C. J. Sheppard. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast. Opt. Lett., 34, 1924-1926(2009).

    [21] L. Tian, L. Waller. Quantitative differential phase contrast imaging in an LED array microscope. Opt. Express, 23, 11394-11403(2015).

    [22] H. Lu, J. Chung, X. Ou, C. Yang. Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast. Opt. Express, 24, 25345-25361(2016).

    [23] Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 105, 13730-13735(2008).

    [24] W. J. Eldridge, S. Ceballos, H. S. Park, A. Wax. Comparing quantitative phase derived cellular mechanical parameters with atomic force microscopy measurements. Proc. SPIE, 10888, 1088803(2019).

    [25] A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, A. Ozcan. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med., 6, 267ra175(2014).

    [26] R. Horstmeyer, X. Ou, G. Zheng, P. Willems, C. Yang. Digital pathology with Fourier ptychography. Comput. Med. Imaging Graph., 42, 38-43(2015).

    [27] J. Miao, D. Sayre, H. Chapman. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A, 15, 1662-1669(1998).

    [28] A. Anand, V. K. Chhaniwal, P. Almoro, G. Pedrini, W. Osten. Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval. Opt. Lett., 34, 1522-1524(2009).

    [29] X. Ou, J. Chung, R. Horstmeyer, C. Yang. Aperture scanning Fourier ptychographic microscopy. Biomed. Opt. Express, 7, 3140-3150(2016).

    [30] W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, G. Jin. Twin-image-free holography: a compressive sensing approach. Phys. Rev. Lett., 121, 093902(2018).

    [31] C. Zheng, R. Zhou, C. Kuang, G. Zhao, Z. Yaqoob, P. T. So. Digital micromirror device-based common-path quantitative phase imaging. Opt. Lett., 42, 1448-1451(2017).

    [32] Y. Baek, K. Lee, S. Shin, Y. Park. Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica, 6, 45-51(2019).

    [33] E. C. Titchmarsh. Introduction to the Theory of Fourier Integrals(1948).

    [34] J. P. Havlicek, J. W. Havlicek, A. C. Bovik. The analytic image. Proceedings of International Conference on Image Processing, 2, 446-449(1997).

    [35] S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, G. Zheng. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Opt. Express, 22, 13586-13599(2014).

    [36] M. Chen, Z. F. Phillips, L. Waller. Quantitative differential phase contrast (DPC) microscopy with computational aberration correction. Opt. Express, 26, 32888-32899(2018).

    [37] J. Sun, C. Zuo, J. Zhang, Y. Fan, Q. Chen. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Sci. Rep., 8, 7669(2018).

    [38] L. Zhang, L. Zhang, X. Mou, D. Zhang. FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process., 20, 2378-2386(2011).

    [39] Y. Zhang, H. Wang, Y. Wu, M. Tamamitsu, A. Ozcan. Edge sparsity criterion for robust holographic autofocusing. Opt. Lett., 42, 3824-3827(2017).

    [40] Y. Baek, Y. Park. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat. Photonics, 15, 354-360(2021).

    Cheng Shen, Mingshu Liang, An Pan, Changhuei Yang. Non-iterative complex wave-field reconstruction based on Kramers–Kronig relations[J]. Photonics Research, 2021, 9(6): 1003
    Download Citation