[1] MOSES E I, CAMPBELL J H, STOLZ C J, et al.. The national ignition facility: The world’s largest optics and laser system[C]. Proceedings of SPIE, 2003, 5001: 1-15.
[2] BAISDEN P A, ATHERTON L J, HAWLEY R A, et al.. Large optics for the national ignition facility [J]. Fusion Science and technolgy, 2016, 69: 295-351.
[3] MANES K R,SPAETH M L, ADAMS J J, et al.. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and technolgy, 2016, 69: 146-249.
[4] STOLZ C J, WEINZAPFEL C L, RIGATTI A L, et al.. Fabrication of meter-scale laser resistant mirrors for the national ignition facility: A fusion laser [C]. Proceedings of SPIE, 2003, 5193:50-58.
[5] STOLZ C J, SHEEHAN L M, MARICLE S M, et al.. A study of laser conditioning methods of hafnia-silica multilayer mirrors [C]. Proceedings of SPIE, 1999, 3578: 144-153.
[6] SHEEHAN L M, KOZLOWSKI M R, RAINER F, et al.. Large-area conditioning of optics for high-power laser systems[C]. Proceedings of SPIE, 1994, 2114: 559-568.
[7] ADAMS J J, JARBOE J A, CARR C W, et al.. Results of sub-nanosecond laser conditioning of KD2PO4 crystals[C]. Proceedings of SPIE,2007, 6403: 64031M-1-14.
[8] RUNKEL M J, NOSTRAND M C. An overview of laser raster scanning for ICF-class laser optics[C]. Proceedings of SPIE, 2002, 4932: 136-146.
[9] PAPANDREW B, STOLZ C J, WU Z L, et al.. Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy [C]. Proceedings of SPIE, 2001, 4347: 53-61.
[10] SAWICK R H, SHANG C C,SWATLOSKI T L, et al.. Failure characterization of nodular defects in multi-layer dielectric coatings[C]. Proceedings of SPIE, 1995, 2428: 333-343.
[11] LIU X F, LI D W,ZHAO Y A, et al.. Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings[J]. Applied Surface Science, 2010, 256:3783-3788.
[12] SHAN Y G, HE H B, WEI C Y, et al.. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating[J]. Applied Optics, 2010, 49(22), 4290-4295.
[13] SHAN Y G, HE H B, WEI C Y, et al.. Thermomechanical mechanism of nodule damage in HfO2/SiO2 multilayer coatings[J]. Chinese Optics Letters, 2012,9(1):103101-1-4
[14] QI H J, ZHU M P,FANG M, et al..Development of high-power laser coatings [J].High Power Laser Science and Engineering,2013(1),36-43.
[15] LIU X F, LI D W,ZHAO Y A, et al.. Further Investigation on the damage characteristic of nodular defects[J]. Applied Optics, 2010, 49: 1774-1779.
[16] LIU X F,ZHAO Y A,GAO Y Q, et al.. Investigations on the catastrophic damage in multilayer dielectric films[J]. Applied Optics, 2013, 52(10): 2194-2199.
[17] CHAI Y J, ZHU M P, WANG H, et al.. Laser-resistance sensitivity to substrate pit size of multilayer coating[J]. Scientific Reports, 2016, 6: 27076-1-7.
[18] DEMANGE P, NEGRES R A, RADOUSKY H B, et al.. Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals [J].Optical Engineering, 2010, 45(10):104205-1-6.
[19] DEMOS S G, DEMANGE P,NEGRES R A, et al.. Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals[J]. Optics Express, 2010, 18(13): 13788-13804.
[20] REYN S, DUCHATEAU G, NATOLI J Y, et al.. Laser-induced damage of KDP crystals by 1omega nanosecond pulses: influence of crystal orientation[J]. Optics Express, 2009, 17(24): 21652-21665.
[21] HU G H, WANG Y L, CHANG J X, et al.. Performance of rapid-grown KDP crystals with continuous filtration[J]. High Power Laser Science and Engineering, 2015,3(1):e13-1-6.
[22] CHANG J X, ZHAO Y A, HU G H, et al.. Characterization of inclusions in KD2PO4 crystals[J]. Chinese Optics Letters, 2015, 13(8):081601-1-4.
[23] WANG Y L, ZHAO Y A, ZHU M P, et al.. Laser induced defect decrement in DKDP crystals varied with photon energy[C]. Proceedings of SPIE, 2014, 9238: 923807-1-4.
[24] WANG Y L, ZHAO Y A ,XIE X X, et al.. Laser damage dependence on the size and concentration of precursor defects in KDP crystals: view through differently sized filter pores[J]. Optics Letters, 2016, 41(7): 1534-1537.
[25] FEIT M D, RUBENCHIK A M. Implications of nanoabsorber initiators for damage probability curves, pulse length scaling, and laser conditioning[C]. Proceedings of SPIE, 2004, 5273: 74-82.
[26] CHIRILA M M, GARCES N Y, HALLIBURTON L E, et al.. Production and thermal decay of radiation-induced point defects in KD2PO4 crystals[J]. Journal of Applied Physics, 2003, 94(10): 6456-6462
[27] HU G H, ZHAO Y A, LI D W, et al.. Transmittance increase after laser conditioning reveals absorption properties variation in DKDP crystals[J]. Optics Express, 2012, 20(22): 25169-25180.
[28] WANG Y L, ZHAO Y A, HU G H, et al.. Mitigation of scattering defect and absorption of DKDP crystals by laser conditioning [J]. Optics Express, 2015, 23(12): 16273-16280.